論文の概要: Stream-level flow matching with Gaussian processes
- arxiv url: http://arxiv.org/abs/2409.20423v5
- Date: Mon, 03 Feb 2025 14:31:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:08:10.908552
- Title: Stream-level flow matching with Gaussian processes
- Title(参考訳): ガウス過程とストリームレベルの流れマッチング
- Authors: Ganchao Wei, Li Ma,
- Abstract要約: 条件付きフローマッチング(CFM)は、連続正規化フロー(CNF)を適合させる訓練アルゴリズムの一群である。
我々は、ストリームに沿った条件付き確率パス、ソースとターゲットのデータペアを接続する遅延パスのインスタンスを定義することで、CFMアルゴリズムを拡張した。
本研究では, CFMの一般化により, 推定限界ベクトル場の分散を適度な計算コストで効果的に低減できることを示す。
- 参考スコア(独自算出の注目度): 4.935875591615496
- License:
- Abstract: Flow matching (FM) is a family of training algorithms for fitting continuous normalizing flows (CNFs). Conditional flow matching (CFM) exploits the fact that the marginal vector field of a CNF can be learned by fitting least-squares regression to the conditional vector field specified given one or both ends of the flow path. In this paper, we extend the CFM algorithm by defining conditional probability paths along ``streams'', instances of latent stochastic paths that connect data pairs of source and target, which are modeled with Gaussian process (GP) distributions. The unique distributional properties of GPs help preserve the ``simulation-free" nature of CFM training. We show that this generalization of the CFM can effectively reduce the variance in the estimated marginal vector field at a moderate computational cost, thereby improving the quality of the generated samples under common metrics. Additionally, adopting the GP on the streams allows for flexibly linking multiple correlated training data points (e.g., time series). We empirically validate our claim through both simulations and applications to image and neural time series data.
- Abstract(参考訳): フローマッチング(英: Flow matching、FM)は、連続正規化フロー(CNF)を適合させる訓練アルゴリズムの一群である。
条件付きフローマッチング(CFM)は、CNFの辺ベクトル場がフローパスの一方または両側の端に指定された条件付きベクトル場に最小二乗回帰を組み込むことで学習できるという事実を利用する。
本稿では、ガウス過程(GP)分布をモデル化した、ソースとターゲットのデータ対を接続する潜在確率経路の例である「ストリーム」に沿った条件付き確率経路を定義することにより、CFMアルゴリズムを拡張した。
GPの独特な分布特性は、CFM訓練の「シミュレーションなし」の性質を保存するのに役立つ。
本研究では, CFMの一般化により, 推定限界ベクトル場の分散を適度な計算コストで効果的に低減できることを示す。
さらに、ストリームにGPを採用することで、複数の相関したトレーニングデータポイント(例えば、時系列)を柔軟にリンクすることができる。
シミュレーションおよび画像およびニューラル時系列データへの応用を通じて、我々の主張を実証的に検証する。
関連論文リスト
- DFM: Interpolant-free Dual Flow Matching [0.8192907805418583]
モデルベクトル場に関する明示的な仮定を伴わない補間自由二重流れマッチング(DFM)手法を提案する。
SMAPによる教師なし異常検出実験は、最大極度またはFM目標で訓練されたCNFと比較して、DFMの利点を示す。
論文 参考訳(メタデータ) (2024-10-11T20:46:04Z) - Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows [2.2530496464901106]
連続正規化フロー(CNF)は、ニューラルネットワークを用いて前記経路を生成するベクトル場をモデル化することにより、基準分布と目標分布の間の確率経路を学習する。
近年,Lipman et al. (2022) は生成モデルにおけるCNFsの簡易かつ安価な学習法であるフローマッチング (FM) を導入した。
本稿では,この手法をマルコフサンプリング法をFM目標評価に応用し,学習したCNFを用いてモンテカルロサンプリングを改善することにより,確率的推論に再利用する。
論文 参考訳(メタデータ) (2024-05-23T10:08:19Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
連続正規化フロー(CNF)のための一般条件流整合(CFM)技術を導入する。
CFMは、拡散モデルのフローをトレーニングするために使用されるような安定した回帰目標を特徴としているが、決定論的フローモデルの効率的な推論を好んでいる。
我々の目的の変種は最適輸送CFM (OT-CFM) であり、訓練がより安定し、より高速な推論をもたらすより単純なフローを生成する。
論文 参考訳(メタデータ) (2023-02-01T14:47:17Z) - Flow Matching for Generative Modeling [44.66897082688762]
フローマッチングは、連続正規化フロー(CNF)のトレーニングのためのシミュレーション不要なアプローチである
拡散経路を持つFMを用いることで、より堅牢で安定した拡散モデルの代替となることが判明した。
ImageNet上でFlow Matchingを使用したCNFのトレーニングは、可能性とサンプル品質の両方の観点から最先端のパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2022-10-06T08:32:20Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。