Time-Series JEPA for Predictive Remote Control under Capacity-Limited Networks
- URL: http://arxiv.org/abs/2406.04853v1
- Date: Fri, 7 Jun 2024 11:35:15 GMT
- Title: Time-Series JEPA for Predictive Remote Control under Capacity-Limited Networks
- Authors: Abanoub M. Girgis, Alvaro Valcarce, Mehdi Bennis,
- Abstract summary: Time-Series Joint Embedding Predictive Architecture (TSEPA) and semantic actor trained through self-supervised learning.
We propose a Time-Series Joint Embedding Predictive Architecture (TSEPA) and a semantic actor trained through self-supervised learning.
- Score: 31.408649975934008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In remote control systems, transmitting large data volumes (e.g. video feeds) from wireless sensors to faraway controllers is challenging when the uplink channel capacity is limited (e.g. RedCap devices or massive wireless sensor networks). Furthermore, the controllers often only need the information-rich components of the original data. To address this, we propose a Time-Series Joint Embedding Predictive Architecture (TS-JEPA) and a semantic actor trained through self-supervised learning. This approach harnesses TS-JEPA's semantic representation power and predictive capabilities by capturing spatio-temporal correlations in the source data. We leverage this to optimize uplink channel utilization, while the semantic actor calculates control commands directly from the encoded representations, rather than from the original data. We test our model through multiple parallel instances of the well-known inverted cart-pole scenario, where the approach is validated through the maximization of stability under constrained uplink channel capacity.
Related papers
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
arXiv Detail & Related papers (2024-10-15T06:28:21Z) - A comparison of RL-based and PID controllers for 6-DOF swimming robots:
hybrid underwater object tracking [8.362739554991073]
We present an exploration and assessment of employing a centralized deep Q-network (DQN) controller as a substitute for PID controllers.
Our primary focus centers on illustrating this transition with the specific case of underwater object tracking.
Our experiments, conducted within a Unity-based simulator, validate the effectiveness of a centralized RL agent over separated PID controllers.
arXiv Detail & Related papers (2024-01-29T23:14:15Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Time-Correlated Sparsification for Efficient Over-the-Air Model
Aggregation in Wireless Federated Learning [23.05003652536773]
Federated edge learning (FEEL) is a promising distributed machine learning (ML) framework to drive edge intelligence applications.
We propose time-correlated sparsification with hybrid aggregation (TCS-H) for communication-efficient FEEL.
arXiv Detail & Related papers (2022-02-17T02:48:07Z) - Data Sharing and Compression for Cooperative Networked Control [28.19172672710827]
We present a solution to learn succinct, highly-compressed forecasts that are co-designed with a modular controller's task objective.
Our simulations with real cellular, Internet-of-Things (IoT), and electricity load data show we can improve a model predictive controller's performance by at least $25%$ while transmitting $80%$ less data than the competing method.
arXiv Detail & Related papers (2021-09-29T19:14:55Z) - Deep Learning Based Antenna-time Domain Channel Extrapolation for Hybrid
mmWave Massive MIMO [30.201881862681972]
We design a latent ordinary differential equation (ODE)-based network to learn the mapping function from the partial uplink channels to the full downlink ones at the base station.
Simulation results show that the designed network can efficiently infer the full downlink channels from the partial uplink ones.
arXiv Detail & Related papers (2021-08-09T11:12:46Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Turning Channel Noise into an Accelerator for Over-the-Air Principal
Component Analysis [65.31074639627226]
Principal component analysis (PCA) is a technique for extracting the linear structure of a dataset.
We propose the deployment of PCA over a multi-access channel based on the algorithm of gradient descent.
Over-the-air aggregation is adopted to reduce the multi-access latency, giving the name over-the-air PCA.
arXiv Detail & Related papers (2021-04-20T16:28:33Z) - Power Control for a URLLC-enabled UAV system incorporated with DNN-Based
Channel Estimation [82.16169603954663]
This letter is concerned with power control for ultra-reliable low-latency communications (URLLC) enabled unmanned aerial vehicle (UAV) system incorporated with deep neural network (DNN) based channel estimation.
arXiv Detail & Related papers (2020-11-14T02:31:04Z) - Convergence of Federated Learning over a Noisy Downlink [84.55126371346452]
We study federated learning, where power-limited wireless devices utilize their local datasets to collaboratively train a global model with the help of a remote parameter server.
This framework requires downlink transmission from the PS to the devices and uplink transmission from the devices to the PS.
The goal of this study is to investigate the impact of the bandwidth-limited shared wireless medium in both the downlink and uplink on the performance of FL.
arXiv Detail & Related papers (2020-08-25T16:15:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.