論文の概要: Combinatorial Complex Score-based Diffusion Modelling through Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2406.04916v1
- Date: Fri, 7 Jun 2024 13:16:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:01:29.399356
- Title: Combinatorial Complex Score-based Diffusion Modelling through Stochastic Differential Equations
- Title(参考訳): 確率微分方程式による組合せ複素スコアに基づく拡散モデリング
- Authors: Adrien Carrel,
- Abstract要約: この論文はグラフ生成におけるスコアベース生成モデルの可能性を探るものである。
本稿では,微分方程式を用いた統一的枠組みを提案する。
このイノベーションは、グラフ生成のみに焦点を当てた既存のフレームワークの制限を克服し、生成AIの新たな可能性を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph structures offer a versatile framework for representing diverse patterns in nature and complex systems, applicable across domains like molecular chemistry, social networks, and transportation systems. While diffusion models have excelled in generating various objects, generating graphs remains challenging. This thesis explores the potential of score-based generative models in generating such objects through a modelization as combinatorial complexes, which are powerful topological structures that encompass higher-order relationships. In this thesis, we propose a unified framework by employing stochastic differential equations. We not only generalize the generation of complex objects such as graphs and hypergraphs, but we also unify existing generative modelling approaches such as Score Matching with Langevin dynamics and Denoising Diffusion Probabilistic Models. This innovation overcomes limitations in existing frameworks that focus solely on graph generation, opening up new possibilities in generative AI. The experiment results showed that our framework could generate these complex objects, and could also compete against state-of-the-art approaches for mere graph and molecule generation tasks.
- Abstract(参考訳): グラフ構造は、分子化学、ソーシャルネットワーク、輸送システムといった分野に適用可能な、自然と複雑なシステムの多様なパターンを表現する汎用的なフレームワークを提供する。
拡散モデルは様々なオブジェクトを生成するのに優れているが、グラフを生成することは依然として困難である。
この論文は、高次関係を含む強力なトポロジカル構造であるコンビナトリコンプレックスをモデルとして、そのようなオブジェクトを生成する際のスコアベースの生成モデルの可能性を探るものである。
本稿では,確率微分方程式を用いた統一的枠組みを提案する。
我々はグラフやハイパーグラフのような複雑なオブジェクトの生成を一般化するだけでなく、ランゲヴィン力学を用いたスコアマッチングや拡散確率モデルのような既存の生成的モデリングアプローチを統一する。
このイノベーションは、グラフ生成のみに焦点を当てた既存のフレームワークの制限を克服し、生成AIの新たな可能性を開く。
実験の結果,本フレームワークはこれらの複雑なオブジェクトを生成することができ,また,単純なグラフや分子生成タスクに対する最先端のアプローチと競合する可能性が示唆された。
関連論文リスト
- Learnable & Interpretable Model Combination in Dynamic Systems Modeling [0.0]
我々は、通常、どのモデルが組み合わされるかについて議論し、様々な混合方程式に基づくモデルを表現することができるモデルインターフェースを提案する。
本稿では,2つの組み合わせモデル間の汎用的な接続を,容易に解釈可能な方法で記述できる新しいワイルドカードトポロジーを提案する。
本稿では、2つのモデル間の異なる接続トポロジを学習し、解釈し、比較する。
論文 参考訳(メタデータ) (2024-06-12T11:17:11Z) - Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
マルコフ確率場を符号化する確率的グラフィカルモデルは、生成的モデリングの基本的な構成要素である。
本稿では,これらのモデルの全確率に基づく解析が,計算効率のよい方法で実現可能であることを示す。
論文 参考訳(メタデータ) (2024-04-27T02:58:22Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
GAM(Generalized Additive Models)は、変数とターゲットの間の非線形関係をキャプチャできるが、複雑な特徴相互作用をキャプチャすることはできない。
本稿では,GAMのフレキシブルな形状関数と,数学的表現に見られる複雑な特徴相互作用を融合させる形状表現算術(SHARE)を提案する。
また、標準制約を超えた表現の透明性を保証するSHAREを構築するための一連のルールを設計する。
論文 参考訳(メタデータ) (2024-04-15T13:44:01Z) - PGODE: Towards High-quality System Dynamics Modeling [40.76121531452706]
本稿では,エージェントが相互に相互作用して動作に影響を与えるマルチエージェント力学系をモデル化する問題について検討する。
最近の研究では、主に幾何学グラフを用いてこれらの相互相互作用を表現し、グラフニューラルネットワーク(GNN)によって捉えられている。
本稿では,プロトタイプグラフODE(Prototypeal Graph ODE)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-11T12:04:47Z) - Algebraic Dynamical Systems in Machine Learning [0.1843404256219181]
繰り返し書き起こしシステムの出力に適用される関数がモデルの形式クラスを定義することを示す。
また、これらの代数モデルは、動的モデルの合成性を記述するための自然言語であることを示す。
これらのモデルは、構造化または非数値データ上の問題を学ぶための上記の動的モデルの一般化のためのテンプレートを提供する。
論文 参考訳(メタデータ) (2023-11-06T14:10:40Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Amortised Inference in Structured Generative Models with Explaining Away [16.92791301062903]
我々は、複数の変数に対して構造化因子を組み込むために、償却変分推論の出力を拡張した。
パラメータ化された因子は、複雑な図形構造における変分メッセージパッシングと効率的に結合可能であることを示す。
次に、構造化されたモデルと、自由に動くげっ歯類の海馬からの高次元神経スパイク時系列を適合させる。
論文 参考訳(メタデータ) (2022-09-12T12:52:15Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。