Combinatorial Complex Score-based Diffusion Modelling through Stochastic Differential Equations
- URL: http://arxiv.org/abs/2406.04916v1
- Date: Fri, 7 Jun 2024 13:16:10 GMT
- Title: Combinatorial Complex Score-based Diffusion Modelling through Stochastic Differential Equations
- Authors: Adrien Carrel,
- Abstract summary: This thesis explores the potential of score-based generative models in generating graphs.
In this thesis, we propose a unified framework by employing differential equations.
This innovation overcomes limitations in existing frameworks that focus solely on graph generation, opening up new possibilities in generative AI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph structures offer a versatile framework for representing diverse patterns in nature and complex systems, applicable across domains like molecular chemistry, social networks, and transportation systems. While diffusion models have excelled in generating various objects, generating graphs remains challenging. This thesis explores the potential of score-based generative models in generating such objects through a modelization as combinatorial complexes, which are powerful topological structures that encompass higher-order relationships. In this thesis, we propose a unified framework by employing stochastic differential equations. We not only generalize the generation of complex objects such as graphs and hypergraphs, but we also unify existing generative modelling approaches such as Score Matching with Langevin dynamics and Denoising Diffusion Probabilistic Models. This innovation overcomes limitations in existing frameworks that focus solely on graph generation, opening up new possibilities in generative AI. The experiment results showed that our framework could generate these complex objects, and could also compete against state-of-the-art approaches for mere graph and molecule generation tasks.
Related papers
- Learnable & Interpretable Model Combination in Dynamic Systems Modeling [0.0]
We discuss which types of models are usually combined and propose a model interface that is capable of expressing a variety of mixed equation based models.
We propose a new wildcard topology, that is capable of describing the generic connection between two combined models in an easy to interpret fashion.
The contributions of this paper are highlighted at a proof of concept: Different connection topologies between two models are learned, interpreted and compared.
arXiv Detail & Related papers (2024-06-12T11:17:11Z) - Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
Probabilistic graphical models that encode an underlying Markov random field are fundamental building blocks of generative modeling.
This paper is to demonstrate that full likelihood based analysis of these models is feasible in a computationally efficient manner.
arXiv Detail & Related papers (2024-04-27T02:58:22Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - PGODE: Towards High-quality System Dynamics Modeling [40.76121531452706]
This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors.
Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by graph neural networks (GNNs)
We propose a new approach named Prototypical Graph ODE to address the problem.
arXiv Detail & Related papers (2023-11-11T12:04:47Z) - Algebraic Dynamical Systems in Machine Learning [0.1843404256219181]
We show that a function applied to the output of an iterated rewriting system defines a formal class of models.
We also show that these algebraic models are a natural language for describing the compositionality of dynamic models.
These models provide a template for the generalisation of the above dynamic models to learning problems on structured or non-numerical data.
arXiv Detail & Related papers (2023-11-06T14:10:40Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Amortised Inference in Structured Generative Models with Explaining Away [16.92791301062903]
We extend the output of amortised variational inference to incorporate structured factors over multiple variables.
We show that appropriately parameterised factors can be combined efficiently with variational message passing in elaborate graphical structures.
We then fit the structured model to high-dimensional neural spiking time-series from the hippocampus of freely moving rodents.
arXiv Detail & Related papers (2022-09-12T12:52:15Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.