論文の概要: Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios
- arxiv url: http://arxiv.org/abs/2406.04955v1
- Date: Fri, 7 Jun 2024 14:20:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 13:41:57.403764
- Title: Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios
- Title(参考訳): 実世界の人間-ロボット空間相互作用シナリオにおけるROS-Causalの実験的評価
- Authors: Luca Castri, Gloria Beraldo, Sariah Mghames, Marc Hanheide, Nicola Bellotto,
- Abstract要約: ロボット空間相互作用における因果発見のためのROSベースのフレームワークであるROS-Causalの実験的検討を行った。
データ収集中にロボットが因果モデルを直接抽出する方法を示す。
シミュレーションから生成されたオンライン因果関係モデルは、実験結果と一致している。
- 参考スコア(独自算出の注目度): 3.8625803348911774
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deploying robots in human-shared environments requires a deep understanding of how nearby agents and objects interact. Employing causal inference to model cause-and-effect relationships facilitates the prediction of human behaviours and enables the anticipation of robot interventions. However, a significant challenge arises due to the absence of implementation of existing causal discovery methods within the ROS ecosystem, the standard de-facto framework in robotics, hindering effective utilisation on real robots. To bridge this gap, in our previous work we proposed ROS-Causal, a ROS-based framework designed for onboard data collection and causal discovery in human-robot spatial interactions. In this work, we present an experimental evaluation of ROS-Causal both in simulation and on a new dataset of human-robot spatial interactions in a lab scenario, to assess its performance and effectiveness. Our analysis demonstrates the efficacy of this approach, showcasing how causal models can be extracted directly onboard by robots during data collection. The online causal models generated from the simulation are consistent with those from lab experiments. These findings can help researchers to enhance the performance of robotic systems in shared environments, firstly by studying the causal relations between variables in simulation without real people, and then facilitating the actual robot deployment in real human environments. ROS-Causal: https://lcastri.github.io/roscausal
- Abstract(参考訳): 人間と共有された環境でロボットを配置するには、近くのエージェントやオブジェクトがどのように相互作用するかを深く理解する必要がある。
因果関係のモデル化に因果推論を用いると、人間の行動の予測が容易になり、ロボットの介入の予測が可能になる。
しかし、ロボット工学における標準的なデファクトフレームワークであるROSエコシステム内に既存の因果発見手法が実装されていないため、実際のロボットに効果的な利用を妨げているため、大きな課題が生じる。
このギャップを埋めるために、我々の以前の研究で、人間とロボットの空間的相互作用におけるデータ収集と因果発見のために設計されたROSベースのフレームワークであるROS-Causalを提案しました。
本研究では,ROS-Causalのシミュレーションおよび実験室シナリオにおける人間とロボットの空間的相互作用のデータセット上での実験的な評価を行い,その性能と有効性を評価する。
本研究では,本手法の有効性を実証し,データ収集中にロボットが因果モデルを直接抽出する方法を示す。
シミュレーションから生成されたオンライン因果関係モデルは、実験結果と一致している。
これらの発見は、研究者が共有環境におけるロボットシステムの性能を高めるのに役立つ。まず、シミュレーションにおける変数間の因果関係を実際の人間なしで研究し、実際の人間環境における実際のロボットの展開を促進する。
ROS-Causal: https://lcastri.github.io/roscausal
関連論文リスト
- ROS-Causal: A ROS-based Causal Analysis Framework for Human-Robot Interaction Applications [3.8625803348911774]
本稿では,人間とロボットの空間的相互作用における因果発見の枠組みであるROS-Causalを紹介する。
ROSと統合されたアドホックシミュレータは、アプローチの有効性を示している。
論文 参考訳(メタデータ) (2024-02-25T11:37:23Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - Efficient Causal Discovery for Robotics Applications [2.1244188321694146]
我々は,F-PCMCI(F-PCMCI)と呼ばれる高速かつ正確な因果解析のためのアプローチの実例を示す。
提案したアプリケーションは,F-PCMCIが人間とロボットの相互作用シナリオの因果モデルを正確にかつ迅速に再構築できることを示す。
論文 参考訳(メタデータ) (2023-10-23T13:30:07Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Causal Discovery of Dynamic Models for Predicting Human Spatial
Interactions [5.742409080817885]
本稿では,人間とロボットの空間的相互作用をモデル化するための因果探索手法を提案する。
最先端の因果探索アルゴリズムを初めて活用するために、新しい方法と実用的な解決策について議論する。
論文 参考訳(メタデータ) (2022-10-29T08:56:48Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Few-Shot Visual Grounding for Natural Human-Robot Interaction [0.0]
本稿では,人間ユーザによって音声で示される,混み合ったシーンから対象物を分割するソフトウェアアーキテクチャを提案する。
システムのコアでは、視覚的な接地のためにマルチモーダルディープニューラルネットワークを使用します。
公開シーンデータセットから収集した実RGB-Dデータに対して,提案モデルの性能を評価する。
論文 参考訳(メタデータ) (2021-03-17T15:24:02Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。