論文の概要: CHIQ: Contextual History Enhancement for Improving Query Rewriting in Conversational Search
- arxiv url: http://arxiv.org/abs/2406.05013v2
- Date: Thu, 26 Sep 2024 06:19:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:44:51.742818
- Title: CHIQ: Contextual History Enhancement for Improving Query Rewriting in Conversational Search
- Title(参考訳): CHIQ:会話検索におけるクエリ書き換え改善のためのコンテキスト履歴の強化
- Authors: Fengran Mo, Abbas Ghaddar, Kelong Mao, Mehdi Rezagholizadeh, Boxing Chen, Qun Liu, Jian-Yun Nie,
- Abstract要約: 我々は,オープンソースの大規模言語モデル(LLM)の機能を活用して,クエリ書き換え前の会話履歴の曖昧さを解消する2段階の手法であるCHIQを紹介する。
我々は、CHIQがほとんどの設定で最先端の結果をもたらす、よく確立された5つのベンチマークを実証する。
- 参考スコア(独自算出の注目度): 67.6104548484555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study how open-source large language models (LLMs) can be effectively deployed for improving query rewriting in conversational search, especially for ambiguous queries. We introduce CHIQ, a two-step method that leverages the capabilities of LLMs to resolve ambiguities in the conversation history before query rewriting. This approach contrasts with prior studies that predominantly use closed-source LLMs to directly generate search queries from conversation history. We demonstrate on five well-established benchmarks that CHIQ leads to state-of-the-art results across most settings, showing highly competitive performances with systems leveraging closed-source LLMs. Our study provides a first step towards leveraging open-source LLMs in conversational search, as a competitive alternative to the prevailing reliance on commercial LLMs. Data, models, and source code will be publicly available upon acceptance at https://github.com/fengranMark/CHIQ.
- Abstract(参考訳): 本稿では,オープンソースの大規模言語モデル(LLM)を,特にあいまいなクエリに対して,対話型検索におけるクエリ書き換えを改善するために効果的に展開する方法について検討する。
質問の書き直し前にLLMの能力を利用して会話履歴のあいまいさを解消する2段階の手法であるCHIQを紹介する。
このアプローチは、会話履歴から直接検索クエリを生成するために、主にクローズドソースLLMを使用する以前の研究とは対照的である。
我々は、CHIQがほとんどの設定において最先端の結果をもたらす5つの確立されたベンチマークを実証し、クローズドソース LLM を利用したシステムとの高い競争性能を示す。
本研究は,商用LLMへの依存に対抗して,オープンソースのLLMを対話型検索に活用するための第一歩となる。
データ、モデル、ソースコードはhttps://github.com/fengranMark/CHIQ.comで公開される。
関連論文リスト
- RepoQA: Evaluating Long Context Code Understanding [12.329233433333416]
RepoQAは、Large Language Models(LLM)を長文のコード理解で評価するためのベンチマークである。
RepoQAには、5つのモダンプログラミング言語にまたがる50の人気のあるリポジトリから収集された500のコード検索タスクが含まれている。
論文 参考訳(メタデータ) (2024-06-10T05:15:30Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - Harnessing Multi-Role Capabilities of Large Language Models for
Open-Domain Question Answering [40.2758450304531]
オープンドメイン質問応答 (ODQA) は情報システムにおいて重要な研究スポットライトとなっている。
本稿では,ODQA処理をクエリ拡張,文書選択,回答生成という3つの基本ステップに定式化するフレームワークを提案する。
我々は,ロールプレイングプロンプトを洗練するための新しいプロンプト最適化アルゴリズムを導入し,高品質なエビデンスと回答を生成する。
論文 参考訳(メタデータ) (2024-03-08T11:09:13Z) - ReSLLM: Large Language Models are Strong Resource Selectors for
Federated Search [35.44746116088232]
フェデレーション検索は、Retrieval-Augmented Generationパイプラインのコンテキストにおいて、ますます重要になる。
現在のSOTA資源選択手法は特徴に基づく学習手法に依存している。
ゼロショット環境でのフェデレーション検索における資源選択を促進するために,ReSLLMを提案する。
論文 参考訳(メタデータ) (2024-01-31T07:58:54Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。