論文の概要: LoCoCo: Dropping In Convolutions for Long Context Compression
- arxiv url: http://arxiv.org/abs/2406.05317v1
- Date: Sat, 8 Jun 2024 01:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 20:24:20.084423
- Title: LoCoCo: Dropping In Convolutions for Long Context Compression
- Title(参考訳): LoCoCo:長期的コンプレッションのための畳み込み
- Authors: Ruisi Cai, Yuandong Tian, Zhangyang Wang, Beidi Chen,
- Abstract要約: 本稿では,Long Context Compression(LoCoCo)のための新しいアプローチであるDropping In Convolutionsを提案する。
LoCoCoは、固定サイズキーバリュー(KV)キャッシュのみを使用し、推論と微調整の両方のステージで効率を向上させることができる。
- 参考スコア(独自算出の注目度): 77.26610232994508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the memory hurdle of processing long context sequences in Large Language Models (LLMs), by presenting a novel approach, Dropping In Convolutions for Long Context Compression (LoCoCo). LoCoCo employs only a fixed-size Key-Value (KV) cache, and can enhance efficiency in both inference and fine-tuning stages. Diverging from prior methods that selectively drop KV pairs based on heuristics, LoCoCo leverages a data-driven adaptive fusion technique, blending previous KV pairs with incoming tokens to minimize the loss of contextual information and ensure accurate attention modeling. This token integration is achieved through injecting one-dimensional convolutional kernels that dynamically calculate mixing weights for each KV cache slot. Designed for broad compatibility with existing LLM frameworks, LoCoCo allows for straightforward "drop-in" integration without needing architectural modifications, while incurring minimal tuning overhead. Experiments demonstrate that LoCoCo maintains consistently outstanding performance across various context lengths and can achieve a high context compression rate during both inference and fine-tuning phases. During inference, we successfully compressed up to 3482 tokens into a 128-size KV cache, while retaining comparable performance to the full sequence - an accuracy improvement of up to 0.2791 compared to baselines at the same cache size. During post-training tuning, we also effectively extended the context length from 4K to 32K using a KV cache of fixed size 512, achieving performance similar to fine-tuning with entire sequences.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) において,Long Context Compression (LoCoCo) のためのDropping In Convolutions (Dropping In Convolutions for Long Context Compression) という新しいアプローチを提示することによって,長いコンテキストシーケンスを処理するためのメモリハードルに取り組む。
LoCoCoは、固定サイズキーバリュー(KV)キャッシュのみを使用し、推論と微調整の両方のステージで効率を向上させることができる。
ヒューリスティックスに基づいてKVペアを選択的にドロップする従来の方法とは違い、LoCoCoはデータ駆動適応融合技術を活用し、以前のKVペアを入力トークンとブレンドすることで、コンテキスト情報の損失を最小限に抑え、正確な注意モデリングを保証する。
このトークン統合は、各KVキャッシュスロットの混合重みを動的に計算する1次元畳み込みカーネルを注入することで達成される。
既存のLLMフレームワークとの広範な互換性のために設計されたLoCoCoは、アーキテクチャの変更を必要とせず、最小限のチューニングオーバーヘッドを発生させることなく、単純な"ドロップイン"統合を可能にする。
実験により、LoCoCoは様々なコンテキスト長にわたって一貫した性能を維持し、推論と微調整の両方のフェーズで高いコンテクスト圧縮率を達成することを示した。
推論中、最大3482トークンを128サイズのKVキャッシュに圧縮することに成功し、同じキャッシュサイズでのベースラインと比較して最大0.2791の精度向上を実現した。
トレーニング後のチューニングでは,4Kから32Kまでのコンテキスト長を固定サイズ512のKVキャッシュで効果的に拡張し,シーケンス全体の微調整に類似した性能を実現した。
関連論文リスト
- KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - KV-Compress: Paged KV-Cache Compression with Variable Compression Rates per Attention Head [0.8158530638728501]
そこで我々は,PagedAttentionフレームワーク内で連続KVブロックを除去する新しい圧縮手法であるKV-Compressを紹介する。
本手法は,Mistral-7B-Instruct-v0.2およびLlama-3.1-8B-InstructのLongBenchにおける圧縮KVの総数を4倍に減らしながら,最先端の性能を実現する。
Llama-3.1-8B-InstructとLlama-3.1-70B-Instruct-FP8の評価は、圧縮速度を最大8倍まで達成し、性能に悪影響を及ぼすことなく、フルキャッシュ性能の90%以上を維持しながら、最大64倍まで向上する。
論文 参考訳(メタデータ) (2024-09-30T19:09:13Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。