論文の概要: LEMMA-RCA: A Large Multi-modal Multi-domain Dataset for Root Cause Analysis
- arxiv url: http://arxiv.org/abs/2406.05375v2
- Date: Thu, 26 Sep 2024 22:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:44:51.735439
- Title: LEMMA-RCA: A Large Multi-modal Multi-domain Dataset for Root Cause Analysis
- Title(参考訳): LEMMA-RCA: 根本原因解析のための大規模マルチモーダルマルチドメインデータセット
- Authors: Lecheng Zheng, Zhengzhang Chen, Dongjie Wang, Chengyuan Deng, Reon Matsuoka, Haifeng Chen,
- Abstract要約: ルート原因分析(RCA)は複雑なシステムの信頼性と性能を高めるために重要である。
LEMMA-RCAは複数のドメインとモダリティにまたがる多様なRCAタスク用に設計された大規模なデータセットである。
本研究では, LEMMA-RCAの性能評価を行い, 8つのベースライン法の性能評価を行った。
- 参考スコア(独自算出の注目度): 32.816594249593955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Root cause analysis (RCA) is crucial for enhancing the reliability and performance of complex systems. However, progress in this field has been hindered by the lack of large-scale, open-source datasets tailored for RCA. To bridge this gap, we introduce LEMMA-RCA, a large dataset designed for diverse RCA tasks across multiple domains and modalities. LEMMA-RCA features various real-world fault scenarios from IT and OT operation systems, encompassing microservices, water distribution, and water treatment systems, with hundreds of system entities involved. We evaluate the quality of LEMMA-RCA by testing the performance of eight baseline methods on this dataset under various settings, including offline and online modes as well as single and multiple modalities. Our experimental results demonstrate the high quality of LEMMA-RCA. The dataset is publicly available at https://lemma-rca.github.io/.
- Abstract(参考訳): ルート原因分析(RCA)は複雑なシステムの信頼性と性能を高めるために重要である。
しかし、この分野の進歩はRCAに適した大規模なオープンソースデータセットの欠如によって妨げられている。
このギャップを埋めるために、複数のドメインとモダリティにまたがる多様なRCAタスク用に設計された大規模なデータセットであるLEMMA-RCAを導入する。
LEMMA-RCAは、マイクロサービス、水分散、水処理システムを含むITおよびOT運用システムから、数百のシステムエンティティを含む、さまざまな現実的な障害シナリオを特徴とする。
LEMMA-RCAの品質評価は,オフラインモードやオンラインモード,シングルモードや複数モードを含む,このデータセット上での8つのベースライン手法の性能試験により行う。
LEMMA-RCAの高品質化を実証した。
データセットはhttps://lemma-rca.github.io/.com/で公開されている。
関連論文リスト
- Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation [2.549112678136113]
Retrieval-Augmented Generation (RAG) は、外部の動的情報を統合することで問題を緩和する。
クロスモーダルアライメントと推論はMultimodal RAGに固有の課題をもたらし、従来の単調なRAGと区別する。
この調査は、より有能で信頼性の高いAIシステムを開発するための基盤となる。
論文 参考訳(メタデータ) (2025-02-12T22:33:41Z) - Towards Efficient Large Multimodal Model Serving [19.388562622309838]
大規模マルチモーダルモデル(LMM)は、テキスト、画像、ビデオ、オーディオなどの様々なモダリティの入力を同時に処理することができる。
これらのモデルは、複雑なアーキテクチャと異質なリソース要求のために大きな課題を生じさせる。
本稿では,各ステージ毎に独立したリソース割り当てと適応スケーリングを可能にする分離されたサービスアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-02T22:10:40Z) - RCAEval: A Benchmark for Root Cause Analysis of Microservice Systems with Telemetry Data [13.68949728404533]
近年,マイクロサービスシステムの根本原因分析(RCA)が注目されている。
大規模なデータセットを含み、包括的な評価環境をサポートする標準ベンチマークはまだ存在しない。
マイクロサービスシステムにおけるRCAEvalは、データセットとRCAEvalの評価環境を提供するオープンソースのベンチマークである。
論文 参考訳(メタデータ) (2024-12-22T13:30:02Z) - Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines [64.61315565501681]
M$2$RAG(Multi-modal Retrieval Augmented Multi-modal Generation)は、基礎モデルのマルチモーダルWebコンテンツ処理を可能にする新しいタスクである。
潜在的な影響にもかかわらず、M$2$RAGは、包括的な分析と高品質なデータリソースを欠いている。
論文 参考訳(メタデータ) (2024-11-25T13:20:19Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
マルチモーダル推論は、人間のような知性を示す人工知能システムの追求において重要な要素である。
提案するマルチモーダル推論(COCO-MMR)データセットは,オープンエンド質問の集合を包含する新しいデータセットである。
画像とテキストエンコーダを強化するために,マルチホップ・クロスモーダル・アテンションや文レベルのコントラスト学習などの革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:58:25Z) - Cross-Modal Fine-Tuning: Align then Refine [83.37294254884446]
ORCAはクロスモーダルな微調整フレームワークであり、単一の大規模事前訓練モデルの適用範囲を様々に拡張する。
ORCAは12のモダリティから60以上のデータセットを含む3つのベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-11T16:32:28Z) - More Diverse Means Better: Multimodal Deep Learning Meets Remote Sensing
Imagery Classification [43.35966675372692]
ディープネットワークをトレーニングし、ネットワークアーキテクチャを構築する方法を示します。
特に、深層ネットワークをトレーニングし、ネットワークアーキテクチャを構築する方法と同様に、異なる融合戦略を示す。
我々のフレームワークは画素単位の分類タスクに限らず、畳み込みニューラルネットワーク(CNN)を用いた空間情報モデリングにも適用できる。
論文 参考訳(メタデータ) (2020-08-12T17:45:25Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。