論文の概要: VP-LLM: Text-Driven 3D Volume Completion with Large Language Models through Patchification
- arxiv url: http://arxiv.org/abs/2406.05543v1
- Date: Sat, 8 Jun 2024 18:17:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 19:16:08.534588
- Title: VP-LLM: Text-Driven 3D Volume Completion with Large Language Models through Patchification
- Title(参考訳): VP-LLM: バッチ化による大規模言語モデルによるテキスト駆動型3次元ボリューム補完
- Authors: Jianmeng Liu, Yichen Liu, Yuyao Zhang, Zeyuan Meng, Yu-Wing Tai, Chi-Keung Tang,
- Abstract要約: 大規模言語モデル(LLM)はマルチモーダル理解および生成タスクにおいて大きな可能性を示している。
本稿では,LLMを利用して条件付き3D補完を行うVolume Patch LLM(VP-LLM)を提案する。
以上の結果から,LLMが複雑なテキスト命令を解釈し,3Dオブジェクトを理解する能力は,最先端の拡散に基づく3Dコンプリートモデルに勝るものであることが示唆された。
- 参考スコア(独自算出の注目度): 56.211321810408194
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent conditional 3D completion works have mainly relied on CLIP or BERT to encode textual information, which cannot support complex instruction. Meanwhile, large language models (LLMs) have shown great potential in multi-modal understanding and generation tasks. Inspired by the recent advancements of LLM, we present Volume Patch LLM (VP-LLM), which leverages LLMs to perform conditional 3D completion in a single-forward pass. To integrate a 3D model into the LLM tokenization configuration, the incomplete 3D object is first divided into small patches that can be encoded independently. These encoded patches are then fed into an LLM along with the text prompt, instructing the LLM to capture the relations between these patches as well as injecting semantic meanings into the 3D object. Our results demonstrate a strong ability of LLMs to interpret complex text instructions and understand 3D objects, surpassing state-of-the-art diffusion-based 3D completion models in generation quality.
- Abstract(参考訳): 最近の条件付き3Dコンプリートは、複雑な命令をサポートできないテキスト情報をエンコードするために、主にCLIPやBERTに依存している。
一方、大規模言語モデル(LLM)はマルチモーダル理解および生成タスクにおいて大きな可能性を示している。
LLMの最近の進歩に触発されて,LLMを活用して1方向パスで条件付き3Dコンプリートを行うVolume Patch LLM(VP-LLM)を提案する。
LLMトークン化設定に3Dモデルを統合するために、不完全な3Dオブジェクトは、まず独立して符号化できる小さなパッチに分割される。
これらのコード化されたパッチは、テキストプロンプトとともにLSMに送られ、LSMにこれらのパッチ間の関係を捉え、意味的な意味を3Dオブジェクトに注入するように指示する。
以上の結果から,LLMが複雑なテキスト命令を解釈し,3次元オブジェクトを理解する能力は,最先端の拡散に基づく3次元補完モデルに勝るものであることが示唆された。
関連論文リスト
- LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models [62.85566496673856]
この研究は、テキストで事前訓練された大規模言語モデル(LLM)の機能を拡張して、統一モデル内で3Dメッシュを生成することを検討する。
主な課題は、3DメッシュデータをLLMがシームレスに処理できる離散トークンに効果的にトークン化することだ。
我々の研究は、LLMがテキストベースのフォーマットで3Dメッシュ生成のための複雑な空間知識を得るために微調整できることを示す最初のものである。
論文 参考訳(メタデータ) (2024-11-14T17:08:23Z) - SPARTUN3D: Situated Spatial Understanding of 3D World in Large Language Models [45.28780381341979]
Spartun3Dという,様々な位置空間推論タスクを組み込んだスケーラブルな位置位置3Dデータセットを導入する。
また,Spartun3D-LLMを提案する。これは既存の3次元LLM上に構築されているが,新しい位置空間アライメントモジュールと統合されている。
論文 参考訳(メタデータ) (2024-10-04T19:22:20Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
本調査では,大規模言語モデルによる3Dデータの処理,理解,生成を可能にする方法論の概要について概説する。
我々の研究は、点雲からニューラル放射場(NeRF)まで、様々な3次元データ表現にまたがっている。
3Dシーン理解、キャプション、質問応答、対話などのタスクにおいて、LLMとの統合を検討する。
論文 参考訳(メタデータ) (2024-05-16T16:59:58Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR
Understanding [36.66305190056456]
LLM(Large Language Models)とMLLM(Multimodal Large Language Models)は、命令追従および2次元画像理解において有望であることを示す。
本稿では,LiDARデータを入力として取り込んだLiDAR-LLMについて述べる。
我々のLiDAR-LLMの中心的な洞察は、言語モデリング問題としての3次元屋外シーン認識の再構築である。
論文 参考訳(メタデータ) (2023-12-21T17:52:12Z) - GPT4Point: A Unified Framework for Point-Language Understanding and
Generation [76.61439685940272]
GPT4PointはMLLMフレームワーク内での3Dオブジェクトの理解と生成のための画期的なポイント言語マルチモーダルモデルである。
GPT4Pointは強力な3D MLLMであり、ポイントクラウドキャプションやQ&Aのような様々なポイントテキスト参照タスクをシームレスに実行できる。
幾何学的な形状や色を維持する低品質のポイントテキスト機能によって、高品質な結果が得られる。
論文 参考訳(メタデータ) (2023-12-05T18:59:55Z) - LLM-Grounder: Open-Vocabulary 3D Visual Grounding with Large Language
Model as an Agent [23.134180979449823]
3Dビジュアルグラウンドティングは、家庭用ロボットにとって重要なスキルであり、その環境に基づいて、オブジェクトをナビゲートし、操作し、質問に答えることを可能にする。
LLM-Grounderは,LLM(Large Language Model)をベースとした新しいゼロショット・オープンボキャブラリである。
以上の結果から,LLMは,特に複雑な言語クエリにおいて,グラウンド化能力を大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2023-09-21T17:59:45Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。