論文の概要: Deep Learning to Predict Glaucoma Progression using Structural Changes in the Eye
- arxiv url: http://arxiv.org/abs/2406.05605v1
- Date: Sun, 9 Jun 2024 01:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 18:56:27.547184
- Title: Deep Learning to Predict Glaucoma Progression using Structural Changes in the Eye
- Title(参考訳): 眼の構造変化を用いた緑内障進展予測のための深層学習
- Authors: Sayan Mandal,
- Abstract要約: 緑内障は視神経症を特徴とする慢性眼疾患であり、不可逆的な視力喪失を引き起こす。
早期発見は萎縮をモニターし、さらなる視力障害を防ぐ治療戦略を開発するために重要である。
本研究では,深層学習モデルを用いて,複雑な疾患の特徴と進行基準を同定する。
- 参考スコア(独自算出の注目度): 0.20718016474717196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Glaucoma is a chronic eye disease characterized by optic neuropathy, leading to irreversible vision loss. It progresses gradually, often remaining undiagnosed until advanced stages. Early detection is crucial to monitor atrophy and develop treatment strategies to prevent further vision impairment. Data-centric methods have enabled computer-aided algorithms for precise glaucoma diagnosis. In this study, we use deep learning models to identify complex disease traits and progression criteria, detecting subtle changes indicative of glaucoma. We explore the structure-function relationship in glaucoma progression and predict functional impairment from structural eye deterioration. We analyze statistical and machine learning methods, including deep learning techniques with optical coherence tomography (OCT) scans for accurate progression prediction. Addressing challenges like age variability, data imbalances, and noisy labels, we develop novel semi-supervised time-series algorithms: 1. Weakly-Supervised Time-Series Learning: We create a CNN-LSTM model to encode spatiotemporal features from OCT scans. This approach uses age-related progression and positive-unlabeled data to establish robust pseudo-progression criteria, bypassing gold-standard labels. 2. Semi-Supervised Time-Series Learning: Using labels from Guided Progression Analysis (GPA) in a contrastive learning scheme, the CNN-LSTM architecture learns from potentially mislabeled data to improve prediction accuracy. Our methods outperform conventional and state-of-the-art techniques.
- Abstract(参考訳): 緑内障は視神経症を特徴とする慢性眼疾患であり、不可逆的な視力喪失を引き起こす。
段階的に進行し、しばしば未診断のまま進行する。
早期発見は萎縮をモニターし、さらなる視力障害を防ぐ治療戦略を開発するために重要である。
データ中心の手法により、コンピュータ支援アルゴリズムによる緑内障の正確な診断が可能になった。
本研究では,深層学習モデルを用いて複雑な疾患の特徴と進行基準を同定し,緑内障の微妙な変化を検出する。
緑内障の進行過程における構造と機能の関係について検討し,構造眼の劣化から機能障害を予測する。
我々は,光学コヒーレンストモグラフィー(OCT)スキャンを用いた深層学習技術を含む統計的および機械学習手法を分析し,精度の高い進行予測を行う。
年齢変動,データ不均衡,ノイズラベルといった課題に対処し,新しい半教師付き時系列アルゴリズムを開発する。 1. 弱スーパービジョンの時系列学習: OCTスキャンから時空間的特徴をエンコードするCNN-LSTMモデルを作成する。
このアプローチは、金標準ラベルをバイパスする堅牢な擬似プログレス基準を確立するために、年齢関連の進歩と正の未ラベルデータを使用する。
2. 半教師付き時系列学習: 比較学習方式でガイドプログレクション分析(GPA)のラベルを用いて, CNN-LSTMアーキテクチャは, 潜在的に誤ラベル付きデータから学習し, 予測精度を向上させる。
本手法は,従来の技術および最先端技術より優れている。
関連論文リスト
- Multi-scale Spatio-temporal Transformer-based Imbalanced Longitudinal
Learning for Glaucoma Forecasting from Irregular Time Series Images [45.894671834869975]
緑内障は、進行性視神経線維損傷と不可逆性失明を引き起こす主要な眼疾患の1つである。
逐次画像入力に適した変換器アーキテクチャに基づくマルチスケール時空間変換器ネットワーク(MST-former)を提案する。
本手法は, 軽度認知障害とアルツハイマー病の予測に90.3%の精度で, アルツハイマー病神経画像イニシアチブ(ADNI)MRIデータセットに優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-02-21T02:16:59Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
糖尿病網膜症(DR: Diabetic Retinopathy)は、早期発見と治療の急激な必要性を浮き彫りにしている。
機械学習(ML)技術の最近の進歩は、DR検出における将来性を示しているが、ラベル付きデータの可用性は、しばしばパフォーマンスを制限している。
本研究では,DR検出に適したSemi-Supervised Graph Learning SSGLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-02T04:42:08Z) - Deep Learning and Computer Vision for Glaucoma Detection: A Review [0.8379286663107844]
緑内障は世界中で不可逆的な盲目の原因となっている。
コンピュータビジョンとディープラーニングの最近の進歩は、自動評価の可能性を示している。
眼底,光コヒーレンス断層撮影,視野画像を用いたAIによる緑内障の診断に関する最近の研究について調査した。
論文 参考訳(メタデータ) (2023-07-31T09:49:51Z) - HGIB: Prognosis for Alzheimer's Disease via Hypergraph Information
Bottleneck [3.8988556182958005]
情報ボトルネック戦略(HGIB)に基づく新しいハイパーグラフフレームワークを提案する。
本フレームワークは,無関係な情報を識別することを目的としており,今後のMCI変換予測のための関連情報の調和にのみ焦点をあてている。
我々は、ADNIに関する広範な実験を通じて、提案したHGIBフレームワークが、アルツハイマー病予後のための既存の最先端ハイパーグラフニューラルネットワークより優れていることを実証した。
論文 参考訳(メタデータ) (2023-03-18T10:53:43Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Efficient Learning and Decoding of the Continuous-Time Hidden Markov
Model for Disease Progression Modeling [119.50438407358862]
本稿では,CT-HMMモデルに対する効率的なEMベースの学習手法の完全な特徴付けについて述べる。
EMに基づく学習は、後状態確率の推定と、状態条件付き統計量の計算という2つの課題から成り立っていることを示す。
緑内障データセットとアルツハイマー病データセットを用いて,100以上の状態のCT-HMMを用いて疾患進行の可視化と予測を行う。
論文 参考訳(メタデータ) (2021-10-26T20:06:05Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
出生前アルコール曝露による胎児アルコール症候群(FAS)は、一連の頭蓋顔面異常を引き起こす可能性がある。
解剖学的ランドマーク検出は,FAS関連顔面異常の検出に重要である。
自然画像における顔のランドマーク検出のために設計された現在のディープラーニングに基づく熱マップ回帰法は、大きなデータセットが利用できることを前提としている。
我々は,大規模な顔認識データセットから学習したネットワークの知識を活用する,新たな正規化トランスファー学習手法を開発した。
論文 参考訳(メタデータ) (2021-09-12T11:05:06Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。