論文の概要: DiffuPT: Class Imbalance Mitigation for Glaucoma Detection via Diffusion Based Generation and Model Pretraining
- arxiv url: http://arxiv.org/abs/2412.03629v1
- Date: Wed, 04 Dec 2024 17:39:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:18.865902
- Title: DiffuPT: Class Imbalance Mitigation for Glaucoma Detection via Diffusion Based Generation and Model Pretraining
- Title(参考訳): DiffuPT:Diffusionベースの生成とモデル事前学習による緑内障検出のためのクラス不均衡緩和
- Authors: Youssof Nawar, Nouran Soliman, Moustafa Wassel, Mohamed ElHabebe, Noha Adly, Marwan Torki, Ahmed Elmassry, Islam Ahmed,
- Abstract要約: 緑内障は、視神経頭の構造的損傷と視野の機能的変化を特徴とする進行性視神経症である。
本研究では, 緑内障の診断, 特に合成データ生成によるクラス不均衡に対処するために, 生成的枠組みを用いている。
- 参考スコア(独自算出の注目度): 1.8218878957822688
- License:
- Abstract: Glaucoma is a progressive optic neuropathy characterized by structural damage to the optic nerve head and functional changes in the visual field. Detecting glaucoma early is crucial to preventing loss of eyesight. However, medical datasets often suffer from class imbalances, making detection more difficult for deep-learning algorithms. We use a generative-based framework to enhance glaucoma diagnosis, specifically addressing class imbalance through synthetic data generation. In addition, we collected the largest national dataset for glaucoma detection to support our study. The imbalance between normal and glaucomatous cases leads to performance degradation of classifier models. By combining our proposed framework leveraging diffusion models with a pretraining approach, we created a more robust classifier training process. This training process results in a better-performing classifier. The proposed approach shows promising results in improving the harmonic mean (sensitivity and specificity) and AUC for the roc for the glaucoma classifier. We report an improvement in the harmonic mean metric from 89.09% to 92.59% on the test set of our national dataset. We examine our method against other methods to overcome imbalance through extensive experiments. We report similar improvements on the AIROGS dataset. This study highlights that diffusion-based generation can be of great importance in tackling class imbalances in medical datasets to improve diagnostic performance.
- Abstract(参考訳): 緑内障は、視神経頭の構造的損傷と視野の機能的変化を特徴とする進行性視神経症である。
緑内障の早期発見は視力喪失を防ぐために重要である。
しかし、医学データセットは、しばしばクラス不均衡に悩まされ、ディープラーニングアルゴリズムでは検出がより困難になる。
本研究では, 緑内障の診断, 特に合成データ生成によるクラス不均衡に対処するために, 生成的枠組みを用いている。
また,緑内障検出のための全国最大のデータセットを収集し,本研究を支援した。
正規ケースと楽観ケースの不均衡は、分類器モデルの性能劣化につながる。
拡散モデルと事前学習アプローチを併用して,より堅牢な分類器学習プロセスを構築した。
このトレーニングプロセスにより、より優れた性能の分類器が得られる。
提案手法は,緑内障分類器の高調波平均値(感度と特異性)とAUCの改善に有望な結果を示す。
我々は,全国データセットのテストセットにおいて,高調波平均値が89.09%から92.59%に改善されたことを報告した。
本研究では,実験によって不均衡を克服する他の手法について検討する。
AIROGSデータセットについても同様の改善が報告されている。
本研究は, 医療データセットのクラス不均衡に対処し, 診断性能を向上させる上で, 拡散型生成が極めて重要であることを明らかにする。
関連論文リスト
- Deep Learning to Predict Glaucoma Progression using Structural Changes in the Eye [0.20718016474717196]
緑内障は視神経症を特徴とする慢性眼疾患であり、不可逆的な視力喪失を引き起こす。
早期発見は萎縮をモニターし、さらなる視力障害を防ぐ治療戦略を開発するために重要である。
本研究では,深層学習モデルを用いて,複雑な疾患の特徴と進行基準を同定する。
論文 参考訳(メタデータ) (2024-06-09T01:12:41Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
本稿では,データセットに固有の不均衡を,合成データの生成によって緩和する手法を提案する。
我々は,患者メタデータと心臓の形状から合成したテキストを条件に,拡散確率モデルに基づく制御ネットを採用する。
本実験は,データセットの不均衡を緩和する手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2024-03-28T15:41:43Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
糖尿病網膜症(DR: Diabetic Retinopathy)は、早期発見と治療の急激な必要性を浮き彫りにしている。
機械学習(ML)技術の最近の進歩は、DR検出における将来性を示しているが、ラベル付きデータの可用性は、しばしばパフォーマンスを制限している。
本研究では,DR検出に適したSemi-Supervised Graph Learning SSGLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-02T04:42:08Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
本稿では,教師なし特徴抽出器として生成拡散オートエンコーダモデルを訓練するための新しい手法を提案する。
フラクチャーグレーディングを連続回帰としてモデル化し, フラクチャーのスムーズな進行を反映した。
重要なことに,本手法の創成特性は,与えられた脊椎の様々な段階を可視化し,自動グルーピングに寄与する特徴を解釈し,洞察することを可能にする。
論文 参考訳(メタデータ) (2023-03-21T17:16:01Z) - Knowledge distillation with a class-aware loss for endoscopic disease
detection [1.1470070927586016]
本研究では, 深層学習を活用して, 病変検出の困難さの局所化を改善するためのフレームワークを開発する。
本モデルは,内視鏡的疾患検出課題とKvasir-SEGデータセットの両方において,平均平均精度(mAP)において高い性能を実現する。
論文 参考訳(メタデータ) (2022-07-19T19:56:12Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。