論文の概要: TR2MTL: LLM based framework for Metric Temporal Logic Formalization of Traffic Rules
- arxiv url: http://arxiv.org/abs/2406.05709v1
- Date: Sun, 9 Jun 2024 09:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 18:27:03.053283
- Title: TR2MTL: LLM based framework for Metric Temporal Logic Formalization of Traffic Rules
- Title(参考訳): TR2MTL:LLMを用いた交通ルールの時空間論理形式化のためのフレームワーク
- Authors: Kumar Manas, Stefan Zwicklbauer, Adrian Paschke,
- Abstract要約: TR2MTLは、大規模言語モデル(LLM)を使用して、交通ルールを自動的にメートル法時間論理(MTL)に変換するフレームワークである。
AVルールの形式化のためのヒューマン・イン・ループ・システムとして構想されている。
時間論理や規則の様々な形式に拡張することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic rules formalization is crucial for verifying the compliance and safety of autonomous vehicles (AVs). However, manual translation of natural language traffic rules as formal specification requires domain knowledge and logic expertise, which limits its adaptation. This paper introduces TR2MTL, a framework that employs large language models (LLMs) to automatically translate traffic rules (TR) into metric temporal logic (MTL). It is envisioned as a human-in-loop system for AV rule formalization. It utilizes a chain-of-thought in-context learning approach to guide the LLM in step-by-step translation and generating valid and grammatically correct MTL formulas. It can be extended to various forms of temporal logic and rules. We evaluated the framework on a challenging dataset of traffic rules we created from various sources and compared it against LLMs using different in-context learning methods. Results show that TR2MTL is domain-agnostic, achieving high accuracy and generalization capability even with a small dataset. Moreover, the method effectively predicts formulas with varying degrees of logical and semantic structure in unstructured traffic rules.
- Abstract(参考訳): 交通規則の定式化は、自動運転車(AV)のコンプライアンスと安全性を検証するために重要である。
しかし、自然言語のトラフィックルールを形式的な仕様として手動で翻訳するにはドメイン知識と論理の専門知識が必要であるため、適応は制限される。
本稿では,大規模言語モデル(LLM)を用いて,交通ルール(TR)を計量時間論理(MTL)に自動翻訳するフレームワークであるTR2MTLを紹介する。
AVルールの形式化のためのヒューマン・イン・ループ・システムとして構想されている。
チェーン・オブ・コンテクスト・ラーニング・アプローチを用いて、LLMをステップバイステップの翻訳でガイドし、有効で文法的に正しいMTL式を生成する。
時間論理や規則の様々な形式に拡張することができる。
このフレームワークを,様々なソースから作成したトラフィックルールの挑戦的データセット上で評価し,異なるコンテキスト内学習手法を用いてLLMと比較した。
その結果、TR2MTLはドメインに依存しないため、小さなデータセットであっても高い精度と一般化能力が得られることがわかった。
さらに,非構造化交通規則における論理的・意味的構造が変化する公式を効果的に予測する。
関連論文リスト
- RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
本稿では,大量のオフラインデータを解釈可能な一階述語論理規則に自動抽出する新しいフレームワーク,RuAGを提案する。
我々は,自然言語処理,時系列,意思決定,産業タスクなど,公共および民間の産業タスクに関する枠組みを評価する。
論文 参考訳(メタデータ) (2024-11-04T00:01:34Z) - Driving with Regulation: Interpretable Decision-Making for Autonomous Vehicles with Retrieval-Augmented Reasoning via LLM [11.725133614445093]
この研究は、自動運転車の解釈可能な意思決定の枠組みを示す。
我々は、検索型拡張生成(RAG)に基づく交通規制検索(TRR)エージェントを開発する。
検索したルールの意味的な複雑さを考えると、我々はLarge Language Model (LLM)を利用した推論モジュールも設計する。
論文 参考訳(メタデータ) (2024-10-07T05:27:22Z) - Think Twice Before Recognizing: Large Multimodal Models for General Fine-grained Traffic Sign Recognition [49.20086587208214]
我々は、微粒な交通標識認識(TSR)を改善するために認識する前に、思考と呼ばれる新しい戦略を提案する。
我々の戦略は、大型マルチモーダルモデル(LMM)の多重思考能力を刺激することで、有効な微粒化TSRを実現する。
論文 参考訳(メタデータ) (2024-09-03T02:08:47Z) - Inductive Learning of Logical Theories with LLMs: A Complexity-graded Analysis [9.865771016218549]
本研究は,Large Language Models(LLM)の機能と限界を分析するための,新しい体系的方法論を提案する。
この分析は、LLM性能に関する特定の推論課題の定量化を可能にする、複雑性グレードのw.r.t.ルール依存構造である。
論文 参考訳(メタデータ) (2024-08-15T16:41:00Z) - Cross-domain Few-shot In-context Learning for Enhancing Traffic Sign Recognition [49.20086587208214]
交通信号認識の強化を目的としたMLLMに基づくドメイン間数ショットインコンテキスト学習手法を提案する。
記述テキストを使用することで、テンプレートと実際の交通標識のドメイン間差を低減することができる。
提案手法は,大規模交通標識画像やラベルを必要とせず,単純かつ均一なテキスト表示のみを必要とする。
論文 参考訳(メタデータ) (2024-07-08T10:51:03Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - Towards Explainable Traffic Flow Prediction with Large Language Models [36.86937188565623]
本稿では,Large Language Models (LLMs) に基づく交通流予測モデルを提案する。
マルチモーダルなトラフィックデータを自然言語記述に転送することで、xTP-LLMは複雑な時系列パターンと外部要因を包括的なトラフィックデータからキャプチャする。
経験的に、xTP-LLMは、ディープラーニングのベースラインと比較して、競争の正確さを示すと同時に、予測の直感的で信頼性の高い説明を提供する。
論文 参考訳(メタデータ) (2024-04-03T07:14:15Z) - AutoGuide: Automated Generation and Selection of State-Aware Guidelines for Large Language Model Agents [74.17623527375241]
AutoGuideは、オフライン体験における暗黙の知識を活用することで、事前訓練されたLLMの知識ギャップを埋める。
提案手法は, 逐次意思決定ベンチマークにおいて, 競争力のあるLCMベースラインよりも高い性能を示すことを示す。
論文 参考訳(メタデータ) (2024-03-13T22:06:03Z) - LLMLight: Large Language Models as Traffic Signal Control Agents [27.29109883009176]
交通信号制御(TSC)は都市交通管理において重要な要素であり、道路網の効率を最適化し渋滞を軽減することを目的としている。
本稿では,大規模言語モデル (LLM) を用いた新しいフレームワーク LLMLight について述べる。
論文 参考訳(メタデータ) (2023-12-26T13:17:06Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
制御可能で現実的な交通シミュレーションは、自動運転車の開発と検証に不可欠である。
データ駆動アプローチは現実的で人間的な振る舞いを生成し、シミュレートされたトラフィックから現実のトラフィックへの移行を改善する。
本研究では,制御可能なトラヒック生成(CTG)のための条件拡散モデルを構築し,テスト時に所望のトラジェクトリ特性を制御できるようにする。
論文 参考訳(メタデータ) (2022-10-31T14:44:59Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。