論文の概要: LLMLight: Large Language Models as Traffic Signal Control Agents
- arxiv url: http://arxiv.org/abs/2312.16044v4
- Date: Tue, 5 Mar 2024 13:21:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-03-07 00:56:48.021332
- Title: LLMLight: Large Language Models as Traffic Signal Control Agents
- Title(参考訳): LLMLight:交通信号制御エージェントとしての大規模言語モデル
- Authors: Siqi Lai, Zhao Xu, Weijia Zhang, Hao Liu and Hui Xiong
- Abstract要約: 交通信号制御(TSC)は都市交通管理において重要な要素であり、道路網の効率を最適化し渋滞を軽減することを目的としている。
本稿では,大規模言語モデル (LLM) を用いた新しいフレームワーク LLMLight について述べる。
- 参考スコア(独自算出の注目度): 27.29109883009176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic Signal Control (TSC) is a crucial component in urban traffic
management, aiming to optimize road network efficiency and reduce congestion.
Traditional methods in TSC, primarily based on transportation engineering and
reinforcement learning (RL), often exhibit limitations in generalization across
varied traffic scenarios and lack interpretability. This paper presents
LLMLight, a novel framework employing Large Language Models (LLMs) as
decision-making agents for TSC. Specifically, the framework begins by
instructing the LLM with a knowledgeable prompt detailing real-time traffic
conditions. Leveraging the advanced generalization capabilities of LLMs,
LLMLight engages a reasoning and decision-making process akin to human
intuition for effective traffic control. Moreover, we build LightGPT, a
specialized backbone LLM tailored for TSC tasks. By learning nuanced traffic
patterns and control strategies, LightGPT enhances the LLMLight framework
cost-effectively. Extensive experiments on nine real-world and synthetic
datasets showcase the remarkable effectiveness, generalization ability, and
interpretability of LLMLight against nine transportation-based and RL-based
baselines.
- Abstract(参考訳): 交通信号制御(TSC)は都市交通管理において重要な要素であり、道路網の効率を最適化し渋滞を軽減することを目的としている。
TSCの伝統的な手法は、主に輸送工学と強化学習(RL)に基づいており、様々な交通シナリオにまたがる一般化の限界を示し、解釈性に欠ける。
本稿では,大規模言語モデル (LLM) を用いた新しいフレームワーク LLMLight について述べる。
特に、このフレームワークはLLMにリアルタイムの交通状況の詳細を理解できるプロンプトで指示することから始まる。
LLMの高度な一般化機能を活用して、LLMLightは、効率的なトラフィック制御のための人間の直感に似た推論と意思決定プロセスを行う。
さらに,TSCタスクに適した専用のバックボーンLLMであるLightGPTを構築した。
微妙なトラフィックパターンと制御戦略を学ぶことで、LightGPTはLLMLightフレームワークを低コストで拡張する。
9つの実世界および合成データセットに対する大規模な実験は、LLMLightの顕著な効果、一般化能力、および9つの輸送ベースおよびRLベースベースラインに対する解釈可能性を示している。
関連論文リスト
- Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
大型言語モデル(LLM)は、輸送上の課題に対処するための変革的な可能性を提供する。
LLM4TRは,交通におけるLSMの役割を体系的に分類する概念的枠組みである。
それぞれの役割について,交通予測や自律運転,安全分析,都市移動最適化など,さまざまな応用について検討した。
論文 参考訳(メタデータ) (2025-03-27T11:56:27Z) - CoLLMLight: Cooperative Large Language Model Agents for Network-Wide Traffic Signal Control [7.0964925117958515]
交通信号制御(TSC)は,交通流の最適化と混雑緩和によって都市交通管理において重要な役割を担っている。
既存のアプローチでは、エージェント間の調整に必要な問題に対処できない。
TSCのための協調LLMエージェントフレームワークであるCoLLMLightを提案する。
論文 参考訳(メタデータ) (2025-03-14T15:40:39Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
大規模言語モデル(LLM)は、強力な一般化可能な推論と計画能力を示している。
本研究では,LLMのゼロショットナビゲーションと経路生成機能について,データセットの構築と評価プロトコルの提案により検討する。
このようなタスクが適切に構成されている場合、現代のLCMは、目標に到達するために生成された動きでナビゲーションを自律的に精錬しながら障害を回避するためのかなりの計画能力を示す。
論文 参考訳(メタデータ) (2025-03-10T13:39:09Z) - CoT-Drive: Efficient Motion Forecasting for Autonomous Driving with LLMs and Chain-of-Thought Prompting [14.567180355849501]
CoT-Driveは,大規模言語モデル(LLM)とチェーン・オブ・シークレット(CoT)プロンプト手法を活用することで,動き予測を強化する新しい手法である。
我々は,LLMの高度なシーン理解能力を軽量言語モデル(LM)に効果的に伝達する,教師による知識蒸留戦略を導入する。
本稿では,文脈固有の意味アノテーションを生成するための軽量なLMを微調整するための2つのシーン記述データセットであるHighway-TextとUrban-Textを提案する。
論文 参考訳(メタデータ) (2025-03-10T12:17:38Z) - Universal Model Routing for Efficient LLM Inference [72.65083061619752]
我々は,これまで観測されていなかった新しいLLMがテスト時に利用可能となる動的ルーティングの問題を考察する。
本稿では,各LSMを特徴ベクトルとして表現する手法を提案する。
これらの戦略が理論的に最適なルーティングルールの推定であり、エラーを定量化するための過剰なリスクを提供する。
論文 参考訳(メタデータ) (2025-02-12T20:30:28Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Large Language Models (LLMs) as Traffic Control Systems at Urban Intersections: A New Paradigm [5.233512464561313]
本研究では,Large Language Models (LLM) をトラヒックコントローラとして利用することで,トラヒック制御システムに新たなアプローチを提案する。
この研究は、論理的推論、シーン理解、意思決定能力を利用してスループットを最適化し、リアルタイムで交通状況に基づいたフィードバックを提供する。
論文 参考訳(メタデータ) (2024-11-16T19:23:52Z) - Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
交通予測における大きな課題は、非常に異なる交通条件によって引き起こされる多様なデータ分散を扱うことである。
近位交通情報を考慮した交通予測のためのグラフ対応LLMを提案する。
我々は、新しいデータ分散に直面する際に、ドメイン適応を効率的にするための軽量なアプローチを採用する。
論文 参考訳(メタデータ) (2024-10-28T09:19:29Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLightは移動中心の深層強化学習を通じて都市交通管理を強化する新しい交通信号制御システムである。
詳細なリアルタイムデータと高度な機械学習技術を活用することで、MoveLightは従来の信号制御手法の限界を克服する。
論文 参考訳(メタデータ) (2024-07-24T14:17:16Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
大規模言語モデル (LLM) は、様々な応用において人間のような文章を解釈・生成する能力を持つ非常に強力な機器となっている。
しかし、LLMのサイズと複雑さの増大は、トレーニングとデプロイメントの両方において大きな課題をもたらしている。
これらの課題に対処するための最近の進歩と研究の方向性について概観する。
論文 参考訳(メタデータ) (2024-06-16T11:56:50Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
本研究は,大規模言語モデルを交通信号制御システムに統合する革新的なアプローチを導入する。
LLMを知覚と意思決定ツールのスイートで強化するハイブリッドフレームワークが提案されている。
シミュレーションの結果から,交通環境の多種性に適応するシステムの有効性が示された。
論文 参考訳(メタデータ) (2024-03-13T08:41:55Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
本稿では,交通信号制御のためのモデルベースメタ強化学習フレームワーク(ModelLight)を提案する。
ModelLight内では、道路交差点のためのモデルのアンサンブルと最適化に基づくメタラーニング法を用いて、RLベースのトラヒックライト制御方式のデータ効率を改善する。
実世界のデータセットの実験では、ModelLightが最先端のトラヒックライト制御アルゴリズムより優れていることが示されている。
論文 参考訳(メタデータ) (2021-11-15T20:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。