Improving Antibody Design with Force-Guided Sampling in Diffusion Models
- URL: http://arxiv.org/abs/2406.05832v2
- Date: Mon, 9 Sep 2024 17:20:01 GMT
- Title: Improving Antibody Design with Force-Guided Sampling in Diffusion Models
- Authors: Paulina Kulytė, Francisco Vargas, Simon Valentin Mathis, Yu Guang Wang, José Miguel Hernández-Lobato, Pietro Liò,
- Abstract summary: We propose a novel approach to enhance the sampling process of diffusion models by integrating force field energy-based feedback.
Our model, DiffForce, employs forces to guide the diffusion sampling process, effectively blending the two distributions.
- Score: 39.94753945046461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Antibodies, crucial for immune defense, primarily rely on complementarity-determining regions (CDRs) to bind and neutralize antigens, such as viruses. The design of these CDRs determines the antibody's affinity and specificity towards its target. Generative models, particularly denoising diffusion probabilistic models (DDPMs), have shown potential to advance the structure-based design of CDR regions. However, only a limited dataset of bound antibody-antigen structures is available, and generalization to out-of-distribution interfaces remains a challenge. Physics based force-fields, which approximate atomic interactions, offer a coarse but universal source of information to better mold designs to target interfaces. Integrating this foundational information into diffusion models is, therefore, highly desirable. Here, we propose a novel approach to enhance the sampling process of diffusion models by integrating force field energy-based feedback. Our model, DiffForce, employs forces to guide the diffusion sampling process, effectively blending the two distributions. Through extensive experiments, we demonstrate that our method guides the model to sample CDRs with lower energy, enhancing both the structure and sequence of the generated antibodies.
Related papers
- Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization [8.546688995090491]
Antibodies are essential proteins responsible for immune responses in organisms.
Recent advances in generative models have significantly enhanced rational antibody design.
We propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design.
arXiv Detail & Related papers (2024-10-19T08:53:01Z) - Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design [56.957070405026194]
We propose an algorithm that enables direct backpropagation of rewards through entire trajectories generated by diffusion models.
DRAKES can generate sequences that are both natural-like and yield high rewards.
arXiv Detail & Related papers (2024-10-17T15:10:13Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - De novo antibody design with SE(3) diffusion [0.3666125285899499]
We introduce IgDiff, an antibody variable domain diffusion model based on a general protein backbone diffusion framework.
We find that IgDiff produces highly designable antibodies that can contain novel binding regions.
We compare our model with a state-of-the-art generative backbone diffusion model on a range of antibody design tasks.
arXiv Detail & Related papers (2024-05-13T10:27:17Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization [51.28231365213679]
We tackle antigen-specific antibody sequence-structure co-design as an optimization problem towards specific preferences.
We propose direct energy-based preference optimization to guide the generation of antibodies with both rational structures and considerable binding affinities to given antigens.
arXiv Detail & Related papers (2024-03-25T09:41:49Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - Structure-based Drug Design with Equivariant Diffusion Models [40.73626627266543]
We present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel conditioned on protein pockets.
Our in silico experiments demonstrate that DiffSBDD captures the statistics of the ground truth data effectively.
These results support the assumption that diffusion models represent the complex distribution of structural data more accurately than previous methods.
arXiv Detail & Related papers (2022-10-24T15:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.