論文の概要: BOSC: A toolbox for aerial imagery mapping
- arxiv url: http://arxiv.org/abs/2406.05833v1
- Date: Sun, 9 Jun 2024 15:54:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 17:47:48.417170
- Title: BOSC: A toolbox for aerial imagery mapping
- Title(参考訳): BOSC:空中画像マッピングのためのツールボックス
- Authors: Ricard Durall, Laura Montilla, Esteban Durall,
- Abstract要約: BOSCは航空画像を操作するためのツールボックスである。
それは、今日のドローンと衛星資源の豊富さにおける重要なニーズに対処する。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient label of aerial images is essential for informed decision-making and resource allocation, whether in identifying crop types or delineating land-use patterns. The development of a comprehensive toolbox for manipulating and annotating aerial imagery represents a significant leap forward in remote sensing and spatial analysis. In this report, we introduce BOSC, a toolbox that enables researchers and practitioners to extract actionable insights with unprecedented accuracy and efficiency, addressing a critical need in today's abundance of drone and satellite resources. For more information or to explore BOSC, please visit our repository.
- Abstract(参考訳): 正確な航空画像のラベル付けは、作物の種類や土地利用パターンの定式化など、情報的意思決定や資源配分に不可欠である。
航空画像の操作・注釈を行う包括的ツールボックスの開発は、リモートセンシングと空間分析において大きな飛躍となる。
本稿では,研究者や実践者がこれまでにない精度と効率で行動可能な洞察を抽出するツールボックスBOSCを紹介する。
詳しい情報やBOSCの探索については、私たちのリポジトリを参照してください。
関連論文リスト
- Semantic Segmentation of Unmanned Aerial Vehicle Remote Sensing Images using SegFormer [0.14999444543328289]
本稿では,UAV画像のセマンティックセグメンテーションのためのセマンティックセグメンテーションフレームワークであるSegFormerの有効性と効率を評価する。
SegFormerの変種は、リアルタイム(B0)から高性能(B5)モデルまで、セマンティックセグメンテーションタスクに適したUAVidデータセットを使用して評価される。
実験結果は、モデルの性能をベンチマークデータセットで示し、多様なUAVシナリオにおけるオブジェクトとランドカバーの特徴を正確に記述する能力を強調した。
論文 参考訳(メタデータ) (2024-10-01T21:40:15Z) - FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
本稿では,衛星画像中の航空機を識別するタスク用にカスタマイズされた,高度な物体検出アルゴリズム群を批判的に評価し,比較する。
この研究は、YOLOバージョン5と8、より高速なRCNN、CenterNet、RetinaNet、RTMDet、DETRを含む一連の方法論を含む。
YOLOv5は空中物体検出のための堅牢なソリューションとして登場し、平均的精度、リコール、ユニオンのスコアに対するインターセクションによってその重要性を裏付けている。
論文 参考訳(メタデータ) (2024-04-03T17:24:27Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
我々は、異なる視点から同期シーンを記録するビデオデータセットであるMultiview Aerial Visual RECgnition(MAVREC)を提示する。
MAVRECは約2.5時間、業界標準の2.7K解像度ビデオシーケンス、0.5万フレーム以上のフレーム、11万の注釈付きバウンディングボックスで構成されている。
これにより、MAVRECは地上および空中ビューのデータセットとして最大であり、ドローンベースのデータセットの中では4番目に大きい。
論文 参考訳(メタデータ) (2023-12-07T18:59:14Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Knowledge distillation with Segment Anything (SAM) model for Planetary
Geological Mapping [0.7266531288894184]
本稿では,迅速なアノテーションと迅速な適応性を実現するための素早い基礎モデルの有効性を示す。
主要な結果は、知識蒸留を使用することで、手動アノテーションのドメインの専門家が必要とする労力を大幅に削減できることを示唆している。
このアプローチは、火星の地形を自動的に検出し、セグメンテーションすることで、地球外発見を加速する可能性がある。
論文 参考訳(メタデータ) (2023-05-12T16:30:58Z) - An Informative Path Planning Framework for Active Learning in UAV-based
Semantic Mapping [27.460481202195012]
無人航空機(UAV)は、航空地図や一般的な監視作業に頻繁に使用される。
近年のディープラーニングの進歩により、画像の自動セマンティックセグメンテーションが実現され、大規模な複雑な環境の解釈が容易になった。
モデル再学習のための情報的訓練画像を自律的に取得するための,UAVのための新しい汎用的計画フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T09:41:21Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - Improving performance of aircraft detection in satellite imagery while
limiting the labelling effort: Hybrid active learning [0.9379652654427957]
防衛分野では、衛星画像上の航空機検出はアナリストにとって貴重なツールである。
本稿では,ラベルに最も関連性の高いデータを選択するためのハイブリッドクラスタリング能動的学習手法を提案する。
本手法は,他の能動的学習法と比較して,優れた,あるいは競争力のある結果が得られることを示す。
論文 参考訳(メタデータ) (2022-02-10T08:24:07Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
本稿では、コンピュータビジョンとパターン認識の観点から、人間中心の空中監視タスクの概要を概観する。
主な対象は、単体または複数の被験者が検出され、特定され、追跡され、再同定され、その振る舞いが分析される人間である。
論文 参考訳(メタデータ) (2022-01-09T20:13:27Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。