Bits-to-Photon: End-to-End Learned Scalable Point Cloud Compression for Direct Rendering
- URL: http://arxiv.org/abs/2406.05915v2
- Date: Wed, 25 Sep 2024 14:01:55 GMT
- Title: Bits-to-Photon: End-to-End Learned Scalable Point Cloud Compression for Direct Rendering
- Authors: Yueyu Hu, Ran Gong, Yao Wang,
- Abstract summary: We develop a point cloud compression scheme that generates a bit stream that can be directly decoded to renderable 3D Gaussians.
The proposed scheme generates a scalable bit stream, allowing multiple levels of details at different bit-rate ranges.
Our method supports real-time color decoding and rendering of high quality point clouds, thus paving the way for interactive 3D streaming applications with free view points.
- Score: 10.662358423042274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud is a promising 3D representation for volumetric streaming in emerging AR/VR applications. Despite recent advances in point cloud compression, decoding and rendering high-quality images from lossy compressed point clouds is still challenging in terms of quality and complexity, making it a major roadblock to achieve real-time 6-Degree-of-Freedom video streaming. In this paper, we address this problem by developing a point cloud compression scheme that generates a bit stream that can be directly decoded to renderable 3D Gaussians. The encoder and decoder are jointly optimized to consider both bit-rates and rendering quality. It significantly improves the rendering quality while substantially reducing decoding and rendering time, compared to existing point cloud compression methods. Furthermore, the proposed scheme generates a scalable bit stream, allowing multiple levels of details at different bit-rate ranges. Our method supports real-time color decoding and rendering of high quality point clouds, thus paving the way for interactive 3D streaming applications with free view points.
Related papers
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Low Latency Point Cloud Rendering with Learned Splatting [24.553459204476432]
High-quality rendering of point clouds is challenging because of the point sparsity and irregularity.
Existing rendering solutions lack in either quality or speed.
We present a framework that unlocks interactive, free-viewing and high-fidelity point cloud rendering.
arXiv Detail & Related papers (2024-09-24T23:26:07Z) - 3D Point Cloud Compression with Recurrent Neural Network and Image
Compression Methods [0.0]
Storing and transmitting LiDAR point cloud data is essential for many AV applications.
Due to the sparsity and unordered structure of the data, it is difficult to compress point cloud data to a low volume.
We propose a new 3D-to-2D transformation which allows compression algorithms to efficiently exploit spatial correlations.
arXiv Detail & Related papers (2024-02-18T19:08:19Z) - TriVol: Point Cloud Rendering via Triple Volumes [57.305748806545026]
We present a dense while lightweight 3D representation, named TriVol, that can be combined with NeRF to render photo-realistic images from point clouds.
Our framework has excellent generalization ability to render a category of scenes/objects without fine-tuning.
arXiv Detail & Related papers (2023-03-29T06:34:12Z) - Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance
Fields [63.21420081888606]
Recent Radiance Fields and extensions are proposed to synthesize realistic images from 2D input.
We present Point2Pix as a novel point to link the 3D sparse point clouds with 2D dense image pixels.
arXiv Detail & Related papers (2023-03-29T06:26:55Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural encoders.
The learned point-cloud can be easily integrated into various downstream tasks, including not only high-level rendering tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image rendering.
arXiv Detail & Related papers (2022-12-31T08:58:39Z) - IPDAE: Improved Patch-Based Deep Autoencoder for Lossy Point Cloud
Geometry Compression [11.410441760314564]
We propose a set of significant improvements to patch-based point cloud compression.
Experiments show that the improved patch-based autoencoder outperforms the state-of-the-art in terms of rate-distortion performance.
arXiv Detail & Related papers (2022-08-04T08:12:35Z) - SoftPool++: An Encoder-Decoder Network for Point Cloud Completion [93.54286830844134]
We propose a novel convolutional operator for the task of point cloud completion.
The proposed operator does not require any max-pooling or voxelization operation.
We show that our approach achieves state-of-the-art performance in shape completion at low and high resolutions.
arXiv Detail & Related papers (2022-05-08T15:31:36Z) - Variable Rate Compression for Raw 3D Point Clouds [5.107705550575662]
We propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data.
Our network is capable of explicitly processing point clouds and generating a compressed description.
arXiv Detail & Related papers (2022-02-28T15:15:39Z) - Patch-Based Deep Autoencoder for Point Cloud Geometry Compression [8.44208490359453]
We propose a patch-based compression process using deep learning.
We divide the point cloud into patches and compress each patch independently.
In the decoding process, we finally assemble the decompressed patches into a complete point cloud.
arXiv Detail & Related papers (2021-10-18T08:59:57Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
We propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network.
In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides.
arXiv Detail & Related papers (2020-03-04T09:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.