論文の概要: Linear Causal Representation Learning from Unknown Multi-node Interventions
- arxiv url: http://arxiv.org/abs/2406.05937v1
- Date: Sun, 9 Jun 2024 23:56:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 15:25:59.267328
- Title: Linear Causal Representation Learning from Unknown Multi-node Interventions
- Title(参考訳): 未知多ノード干渉による線形因果表現学習
- Authors: Burak Varıcı, Emre Acartürk, Karthikeyan Shanmugam, Ali Tajer,
- Abstract要約: 十分に多様な介入環境が与えられれば、祖先への識別はソフトな介入だけで可能であることが確立された。
注目すべきは、これらの保証はより制限的な単一ノードの介入において最もよく知られた結果と一致することである。
- 参考スコア(独自算出の注目度): 29.21757873428357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the multifaceted recent advances in interventional causal representation learning (CRL), they primarily focus on the stylized assumption of single-node interventions. This assumption is not valid in a wide range of applications, and generally, the subset of nodes intervened in an interventional environment is fully unknown. This paper focuses on interventional CRL under unknown multi-node (UMN) interventional environments and establishes the first identifiability results for general latent causal models (parametric or nonparametric) under stochastic interventions (soft or hard) and linear transformation from the latent to observed space. Specifically, it is established that given sufficiently diverse interventional environments, (i) identifiability up to ancestors is possible using only soft interventions, and (ii) perfect identifiability is possible using hard interventions. Remarkably, these guarantees match the best-known results for more restrictive single-node interventions. Furthermore, CRL algorithms are also provided that achieve the identifiability guarantees. A central step in designing these algorithms is establishing the relationships between UMN interventional CRL and score functions associated with the statistical models of different interventional environments. Establishing these relationships also serves as constructive proof of the identifiability guarantees.
- Abstract(参考訳): 介入因果表現学習(CRL)の多面的進歩にもかかわらず、それらは主に単一ノード介入のスタイリングされた仮定に焦点を当てている。
この仮定は広範囲のアプリケーションでは有効ではなく、一般に、介入環境に介在するノードのサブセットは完全に不明である。
本稿では、未知のマルチノード干渉環境下での干渉CRLに着目し、確率的介入(ソフトまたはハード)および潜時から観測空間への線形変換の下で、一般的な潜時因果モデル(パラメトリックまたはノンパラメトリック)に対する最初の識別可能性を示す。
具体的には、十分に多様な介入環境が与えられている。
一 柔らかい介入のみを用いて祖先の身元を特定でき、
(二)ハード介入により完全識別が可能である。
注目すべきは、これらの保証はより制限的な単一ノードの介入において最もよく知られた結果と一致することである。
さらに、識別可能性を保証するためのCRLアルゴリズムも提供される。
これらのアルゴリズムの設計における中心的なステップは、UMN干渉CRLと異なる干渉環境の統計モデルに関連するスコア関数の関係を確立することである。
これらの関係を確立することは、識別可能性を保証するための建設的な証拠としても機能する。
関連論文リスト
- Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
介入データを含むデータセットは,データ分布に関する現実的な仮定の下で効果的に抽出可能であることを示す。
観察的および介入的設定における各変数の限界分布の比較に依拠する介入忠実性を導入する。
また、多数の単一変数の介入を含むデータセットから因果順序を推測するアルゴリズムであるIntersortを導入する。
論文 参考訳(メタデータ) (2024-05-28T16:07:17Z) - A General Causal Inference Framework for Cross-Sectional Observational Data [0.4972323953932129]
断面観測データに特化して設計された一般因果推論(GCI)フレームワーク。
本稿では,断面観測データを対象としたGCIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-28T14:26:27Z) - Causal Discovery under Off-Target Interventions [18.92683981229985]
因果グラフ発見は様々な分野の応用において重要な問題である。
本研究は,介入数の最小化を目標とした介入設定の下での因果発見問題に対処する。
論文 参考訳(メタデータ) (2024-02-13T05:43:49Z) - Bayesian causal discovery from unknown general interventions [55.2480439325792]
本稿では,観測データと介入実験データを組み合わせたDAG(Cousal Directed Acyclic Graphs)の学習問題について考察する。
我々は,DAG,介入対象,誘導親集合上の後続分布を近似するマルコフ連鎖モンテカルロスキームを開発した。
論文 参考訳(メタデータ) (2023-12-01T11:30:51Z) - Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions [14.586959818386765]
因果表現学習において、複数の変数を1つの環境内の介入によって対象とすることができる最初の識別可能性結果を提供する。
我々のアプローチは、環境全体にわたる介入のカバレッジと多様性に関する一般的な仮定に基づいている。
理論的貢献に加えて,多ノード干渉データから因果表現を学習するための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-05T16:05:00Z) - General Identifiability and Achievability for Causal Representation
Learning [33.80247458590611]
本稿では,潜伏因果グラフにおけるノード毎の2つのハードアンカップリング介入を用いて,識別可能性と達成性を評価する。
同定可能性について,未結合の介入の下で潜伏因果モデルと変数の完全回復が保証されることを示す。
さらに、この分析は、2つのハードカップリングされた介入に対して、同一ノードが介在する2つの環境に関するメタデータが知られている場合に、識別可能性の結果を回復する。
論文 参考訳(メタデータ) (2023-10-24T01:47:44Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。