論文の概要: Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters
- arxiv url: http://arxiv.org/abs/2406.05955v1
- Date: Mon, 10 Jun 2024 01:21:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 15:16:08.457609
- Title: Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters
- Title(参考訳): ターボスパース:最小活性化パラメータによるLDM SOTAの性能向上
- Authors: Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen, Li Ma, Zeyu Mi, Haibo Chen,
- Abstract要約: 活性化間隔は活性化関数によって決定されるが、一般的に使用されるSwiGLUやGeGLUのような活性化間隔は限られている。
高品質なトレーニングデータ混合比とともに, LLMの活性化間隔を改善するために設計された新しいdReLU関数を提案する。
携帯電話では、TurboSparse-Mixtral-47Bが毎秒11トークンの推論速度を実現しています。
- 参考スコア(独自算出の注目度): 20.093224415258174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploiting activation sparsity is a promising approach to significantly accelerating the inference process of large language models (LLMs) without compromising performance. However, activation sparsity is determined by activation functions, and commonly used ones like SwiGLU and GeGLU exhibit limited sparsity. Simply replacing these functions with ReLU fails to achieve sufficient sparsity. Moreover, inadequate training data can further increase the risk of performance degradation. To address these challenges, we propose a novel dReLU function, which is designed to improve LLM activation sparsity, along with a high-quality training data mixture ratio to facilitate effective sparsification. Additionally, we leverage sparse activation patterns within the Feed-Forward Network (FFN) experts of Mixture-of-Experts (MoE) models to further boost efficiency. By applying our neuron sparsification method to the Mistral and Mixtral models, only 2.5 billion and 4.3 billion parameters are activated per inference iteration, respectively, while achieving even more powerful model performance. Evaluation results demonstrate that this sparsity achieves a 2-5x decoding speedup. Remarkably, on mobile phones, our TurboSparse-Mixtral-47B achieves an inference speed of 11 tokens per second. Our models are available at \url{https://huggingface.co/PowerInfer}
- Abstract(参考訳): 活性化スペシャリティの爆発は、性能を損なうことなく、大規模言語モデル(LLM)の推論プロセスを著しく加速する、有望なアプローチである。
しかし、アクティベーション間隔はアクティベーション関数によって決定され、SwiGLUやGeGLUのような一般的に使われるものは限られた間隔を示す。
これらの関数をReLUで置き換えるだけで十分な間隔が得られない。
さらに、不十分なトレーニングデータは、パフォーマンス劣化のリスクをさらに高めることができる。
これらの課題に対処するため, LLMの活性化空間性を改善するために設計された新しいdReLU関数と, 効果的なスパシフィケーションを容易にするための高品質なトレーニングデータ混合比を提案する。
さらに、Mixture-of-Experts(MoE)モデルのFFN(Feed-Forward Network)エキスパートのスパースアクティベーションパターンを活用し、効率をさらに向上する。
ミストラルモデルとミキストラルモデルにニューロンスペーシフィケーション法を適用することにより、推論イテレーション毎に25億と43億のパラメータが活性化され、さらに強力なモデル性能が達成される。
評価結果から,この疎度は2~5倍の復号速度を実現することが示された。
携帯電話では、TurboSparse-Mixtral-47Bが毎秒11トークンの推論速度を実現しています。
我々のモデルは \url{https://huggingface.co/PowerInfer} で利用可能です。
関連論文リスト
- Sparsing Law: Towards Large Language Models with Greater Activation Sparsity [62.09617609556697]
活性化空間性は、除去できる活性化出力の中に、かなり弱い分散要素が存在することを表す。
PPL-$p%$ sparsity, a accurate and performance-aware activation sparsity metric。
我々は、SiLUよりも活性化関数としてReLUが効率的であることを示し、より多くのトレーニングデータを利用してアクティベーション空間を改善することができることを示した。
論文 参考訳(メタデータ) (2024-11-04T17:59:04Z) - Rotated Runtime Smooth: Training-Free Activation Smoother for accurate INT4 inference [54.2589824716527]
大規模言語モデルは、その大規模なため、相当な計算とメモリ移動コストを発生させる。
既存のアプローチでは、外れ値と通常の値を2つの行列に分けたり、アクティベーションからウェイトに移行したりしています。
Smooth と Rotation 操作からなる量子化のためのプラグ・アンド・プレイ・アクティベーション・スムーザである Rotated Smooth (RRS) を提案する。
提案手法は,LLaMAおよびQwenファミリーにおける最先端の手法より優れており,IF4推論におけるWikiText-2の難易度は57.33から6.66に向上している。
論文 参考訳(メタデータ) (2024-09-30T14:59:22Z) - CHESS: Optimizing LLM Inference via Channel-Wise Thresholding and Selective Sparsification [7.8430836312711465]
エッジデバイス上の大規模言語モデル(LLM)は、計算オーバーヘッドとメモリ要求がかなり大きいため、大きな課題を呈している。
活性化スパーシフィケーションは、推論中に活性化されたニューロンの数を減らすことでこれらの課題を軽減することができる。
本稿では,CHESS(CHannel-wise thrEsholding and Selective Sparsification)による一般的なアクティベーションスカラー化手法を紹介する。
論文 参考訳(メタデータ) (2024-09-02T16:41:44Z) - ShadowLLM: Predictor-based Contextual Sparsity for Large Language Models [67.97667465509504]
我々は,LLMの挙動を隠蔽し,より親密なパターンを強制できる新しい予測器であるShadowLLMを開発した。
ShadowLLMは最先端のDejaVuフレームワーク上で最大20%のスピードアップを達成する。
論文 参考訳(メタデータ) (2024-06-24T13:41:08Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
本稿では,遅延拡散モデル圧縮のための新しい性能保存型構造化プルーニング手法であるLD-Prunerを紹介する。
我々は,テキスト・トゥ・イメージ(T2I)生成,無条件画像生成(UIG),無条件音声生成(UAG)の3つのタスクに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-04-18T06:35:37Z) - ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models [74.59731375779934]
活性化スパーシリティ(Activation sparsity)とは、活性化出力の間に弱い分散要素が存在することを指す。
本稿では,PLMを高活性化空間にプッシュするために,"ProSparse" という,シンプルで効果的なスペース化手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T03:58:49Z) - Learn To be Efficient: Build Structured Sparsity in Large Language Models [17.940183066850565]
大きな言語モデル(LLM)は、その10億レベルのパラメータで驚くべき成功を収めていますが、高い推論オーバーヘッドを引き起こします。
既存の方法は、訓練後の環境で自然に形成された活性化空間の利用にのみ焦点をあてる。
本稿では,Learning-To-Efficient (LTE) という学習学習アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-02-09T01:18:16Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
本稿では、ニューロンの出力の等級と調整された等級しきい値によってニューロンの活性化を定義する一般的な方法を提案する。
スパース計算における最も効率的なアクティベーション関数を見つけるために,本手法を提案する。
我々は、ReLU、SwiGLU、ReGLU、ReLU$2$といった異なるアクティベーション機能を利用したLCMの徹底的な実験を行う。
論文 参考訳(メタデータ) (2024-02-06T08:45:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。