論文の概要: ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization
- arxiv url: http://arxiv.org/abs/2406.05981v3
- Date: Thu, 25 Jul 2024 17:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 18:47:24.518642
- Title: ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization
- Title(参考訳): ShiftAddLLM: トレーニング後の乗算レスパラメータ化による事前学習LDMの高速化
- Authors: Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu, Amir Yazdanbakhsh, Yingyan Celine Lin,
- Abstract要約: ShiftAddLLMは大規模言語モデルの効率的な乗算自由モデルである。
5.6および22.7ポイントのパープレキシティ改善を同等または低いレイテンシで達成する。
5つのLLMファミリーと8つのタスクの実験は、ShiftAddLLMの有効性を一貫して検証している。
- 参考スコア(独自算出の注目度): 13.622268474310918
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have shown impressive performance on language tasks but face challenges when deployed on resource-constrained devices due to their extensive parameters and reliance on dense multiplications, resulting in high memory demands and latency bottlenecks. Shift-and-add reparameterization offers a promising solution by replacing costly multiplications with hardware-friendly primitives in both the attention and multi-layer perceptron (MLP) layers of an LLM. However, current reparameterization techniques require training from scratch or full parameter fine-tuning to restore accuracy, which is resource-intensive for LLMs. To address this, we propose accelerating pretrained LLMs through post-training shift-and-add reparameterization, creating efficient multiplication-free models, dubbed ShiftAddLLM. Specifically, we quantize each weight matrix into binary matrices paired with group-wise scaling factors. The associated multiplications are reparameterized into (1) shifts between activations and scaling factors and (2) queries and adds according to the binary matrices. To reduce accuracy loss, we present a multi-objective optimization method to minimize both weight and output activation reparameterization errors. Additionally, based on varying sensitivity across layers to reparameterization, we develop an automated bit allocation strategy to further reduce memory usage and latency. Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM, achieving average perplexity improvements of 5.6 and 22.7 points at comparable or lower latency compared to the most competitive quantized LLMs at 3 and 2 bits, respectively, and more than 80% memory and energy reductions over the original LLMs. Codes and models are available at https://github.com/GATECH-EIC/ShiftAddLLM.
- Abstract(参考訳): 大規模言語モデル(LLM)は、言語タスクにおいて顕著なパフォーマンスを示しているが、リソース制約のあるデバイスにデプロイする際の課題は、その広範なパラメータと密度の高い乗算に依存するため、高いメモリ要求と遅延ボトルネックをもたらす。
Shift-and-add再パラメータ化は、LLMの注目層と多層パーセプトロン(MLP)層の両方において、ハードウェアフレンドリなプリミティブにコストのかかる乗算を置き換えることで、有望なソリューションを提供する。
しかし、現在の再パラメータ化技術では、LLMのリソース集約的な精度を回復するために、スクラッチやフルパラメータの微調整からのトレーニングが必要である。
そこで本研究では,事前学習後の再パラメータ化を高速化し,ShiftAddLLMと呼ばれる効率的な乗算自由モデルを作成することを提案する。
具体的には,各重み行列を群ワイドスケーリング因子と組み合わせた二乗行列に定量化する。
関連する乗算は(1)アクティベーションとスケーリング係数のシフト、(2)クエリに再パラメータ化され、バイナリ行列に従って加算される。
精度損失を低減するため,重みと出力のアクティベーション再パラメータ化誤差を最小化する多目的最適化手法を提案する。
さらに、再パラメータ化のための層間の感度の変化に基づいて、メモリ使用量とレイテンシをさらに削減する自動ビット割り当て戦略を開発する。
5つのLLMファミリーと8つのタスクによる実験は、ShiftAddLLMの有効性を一貫して検証し、それぞれ3ビットと2ビットの最も競争力のある量子化LDMと比較して5.6ポイントと22.7ポイントの平均パープレキシティ改善を実現し、元のLCMよりも80%以上のメモリとエネルギー削減を実現した。
コードとモデルはhttps://github.com/GATECH-EIC/ShiftAddLLM.comで公開されている。
関連論文リスト
- Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
我々は,デコーディングのメモリバウンドネスに対処するために,プログレッシブ・ミックス・プレシジョン・デコーディング(PMPD)を導入する。
PMPDはfp16モデルの行列ベクトル乗算において1.4$-$12.2$times$ Speedupを達成する。
我々の手法は、fp16モデルよりも3.8$-$8.0$times$、均一量子化アプローチよりも1.54$times$のスループット向上をもたらす。
論文 参考訳(メタデータ) (2024-10-17T11:46:33Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - Characterizing the Accuracy -- Efficiency Trade-off of Low-rank Decomposition in Language Models [1.401463252785724]
低ランクの分解は、大規模にリアルタイムサービスを必要とするLLMベースのアプリケーションにとって有望な方向である。
低ランクな分解設計空間を形式化し、分解設計空間が巨大であることを示す。
以上の結果から,最小精度で9%のモデルサイズ削減を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-05-10T17:40:02Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization [27.79783067245817]
大規模言語モデル(LLM)は、高いメモリ要求と計算コストのため、微調整とデプロイメントの課題に直面している。
本稿では,PEFT と量子化 LLM の利点を組み合わせた簡易かつ効果的な手法である PEQA (Efficient Adaptation and Quantization-aware) を提案する。
論文 参考訳(メタデータ) (2023-05-23T15:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。