論文の概要: PowerInfer-2: Fast Large Language Model Inference on a Smartphone
- arxiv url: http://arxiv.org/abs/2406.06282v1
- Date: Mon, 10 Jun 2024 14:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:48:16.008307
- Title: PowerInfer-2: Fast Large Language Model Inference on a Smartphone
- Title(参考訳): PowerInfer-2:スマートフォン上での高速大言語モデル推論
- Authors: Zhenliang Xue, Yixin Song, Zeyu Mi, Le Chen, Yubin Xia, Haibo Chen,
- Abstract要約: PowerInfer-2は、スマートフォン上での大規模言語モデルの高速推論のために設計されたフレームワークである。
PowerInfer-2は、TurboSparse-Mixtral-47Bモデルで毎秒11.68トークンを生成する最初のシステムである。
完全にメモリに収まるモデルでは、PowerInfer-2はメモリ使用量の約40%の削減を達成できる。
- 参考スコア(独自算出の注目度): 5.753211160263793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces PowerInfer-2, a framework designed for high-speed inference of Large Language Models (LLMs) on smartphones, particularly effective for models whose sizes exceed the device's memory capacity. The key insight of PowerInfer-2 is to utilize the heterogeneous computation, memory, and I/O resources in smartphones by decomposing traditional matrix computations into fine-grained neuron cluster computations. Specifically, PowerInfer-2 features a polymorphic neuron engine that adapts computational strategies for various stages of LLM inference. Additionally, it introduces segmented neuron caching and fine-grained neuron-cluster-level pipelining, which effectively minimize and conceal the overhead caused by I/O operations. The implementation and evaluation of PowerInfer-2 demonstrate its capability to support a wide array of LLM models on two smartphones, achieving up to a 29.2x speed increase compared with state-of-the-art frameworks. Notably, PowerInfer-2 is the first system to serve the TurboSparse-Mixtral-47B model with a generation rate of 11.68 tokens per second on a smartphone. For models that fit entirely within the memory, PowerInfer-2 can achieve approximately a 40% reduction in memory usage while maintaining inference speeds comparable to llama.cpp and MLC-LLM. For more details, including a demonstration video, please visit the project site at www.powerinfer.ai/v2.
- Abstract(参考訳): 本稿では,スマートフォン上での大規模言語モデル(LLM)の高速推論のためのフレームワークであるPowerInfer-2を紹介する。
PowerInfer-2の重要な洞察は、従来の行列計算をきめ細かいニューロンクラスタ計算に分解することで、スマートフォンの異種計算、メモリ、I/Oリソースを活用することである。
具体的には、PowerInfer-2はLLM推論の様々な段階の計算戦略に適応する多形ニューロンエンジンを備えている。
さらに、セグメント化されたニューロンキャッシングときめ細かいニューロンクラスターレベルのパイプライニングを導入し、I/O操作によるオーバーヘッドを効果的に最小化し、隠蔽する。
PowerInfer-2の実装と評価は、2つのスマートフォンで幅広いLLMモデルをサポートする能力を示し、最先端のフレームワークと比較して29.2倍の速度向上を実現した。
特にPowerInfer-2は、TurboSparse-Mixtral-47Bモデルに1秒あたり11.68トークンを生成する最初のシステムである。
完全にメモリに収まるモデルでは、PowerInfer-2 は llama.cpp や MLC-LLM に匹敵する推論速度を維持しながら、メモリ使用量の約40%の削減を実現している。
デモビデオを含む詳細については、www.powerinfer.ai/v2のプロジェクトサイトを参照してください。
関連論文リスト
- Benchmarking Edge AI Platforms for High-Performance ML Inference [0.0]
エッジコンピューティングは、通信遅延を減らし、リアルタイム処理を可能にする能力から、高性能で異質なSystem-on-Chipソリューションの興隆を促進している。
現在のアプローチでは、現代的なハードウェアをスケールダウンすることが多いが、ニューラルネットワークワークロードのパフォーマンス特性は、大きく異なる場合がある。
我々は、CPUのみ、CPU/GPU、CPU/NPU統合ソリューション間で、様々な線形代数およびニューラルネットワーク推論タスクのレイテンシとスループットを比較した。
論文 参考訳(メタデータ) (2024-09-23T08:27:27Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
論文 参考訳(メタデータ) (2024-08-21T16:10:41Z) - Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
大規模言語モデル(LLM)は自然言語処理を変換し、機械が人間のようなテキストを生成し、意味のある会話を行うことを可能にする。
計算と記憶能力の発達はムーアの法則の廃止によってさらに悪化している。
コンピュート・イン・メモリ(CIM)技術は、メモリ内でアナログ計算を直接実行することにより、AI推論を加速するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-12T16:57:58Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Distributed Inference and Fine-tuning of Large Language Models Over The
Internet [91.00270820533272]
大規模言語モデル(LLM)は、多くのNLPタスクで有用であり、サイズが向上する。
これらのモデルはハイエンドのハードウェアを必要とするため、ほとんどの研究者にはアクセスできない。
本研究では,システムスループットの最大化のためにデバイスを自動的に割り当てるフォールトトレラント推論アルゴリズムとロードバランシングプロトコルを開発する。
論文 参考訳(メタデータ) (2023-12-13T18:52:49Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
高速コア上での低コストかつ高効率な大規模生成モデル推論を実現するためのFlash-LLMを提案する。
SpMMカーネルレベルでは、Flash-LLMは最先端のライブラリであるSputnikとSparTAをそれぞれ平均2.9倍、1.5倍で上回っている。
論文 参考訳(メタデータ) (2023-09-19T03:20:02Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - A Heterogeneous In-Memory Computing Cluster For Flexible End-to-End
Inference of Real-World Deep Neural Networks [12.361842554233558]
最新のTinyMLタスクを小さなバッテリに制約されたIoTデバイスにデプロイするには、高い計算エネルギー効率が必要である。
非揮発性メモリ(NVM)を使用したアナログメモリコンピューティング(IMC)は、ディープニューラルネットワーク(DNN)推論の大幅な効率向上を実現する。
8つのRISC-Vコア、インメモリ・コンピューティング・アクセラレータ(IMA)、デジタル・アクセラレータを統合した異種密結合アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-01-04T11:12:01Z) - POEM: 1-bit Point-wise Operations based on Expectation-Maximization for
Efficient Point Cloud Processing [53.74076015905961]
我々は,効率的なポイントクラウド処理のために,期待最大化に基づくポイントワイズ処理をBNNに導入する。
私たちのPOEMは、最先端のバイナリポイントクラウドネットワークを6.7%まで大きく上回っている。
論文 参考訳(メタデータ) (2021-11-26T09:45:01Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - Efficient Neural Network Deployment for Microcontroller [0.0]
本稿では,マイクロコントローラのための畳み込みニューラルネットワークの展開を探索し,一般化する。
メモリの節約と性能は、ARM Cortex-M CPU用に開発されたCMSIS-NNフレームワークと比較される。
最終的な目的は、トレーニングされたネットワーク重みを持つPyTorchモデルを消費するツールを開発することであり、低メモリ(キロバイトレベル)と限られた計算能力を持つマイクロコントローラのためにC/C++で最適化された推論エンジンとなる。
論文 参考訳(メタデータ) (2020-07-02T19:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。