Identifying Bottlenecks of NISQ-friendly HHL algorithms
- URL: http://arxiv.org/abs/2406.06288v2
- Date: Fri, 2 Aug 2024 12:20:11 GMT
- Title: Identifying Bottlenecks of NISQ-friendly HHL algorithms
- Authors: Marc Andreu Marfany, Alona Sakhnenko, Jeanette Miriam Lorenz,
- Abstract summary: We study noise resilience of NISQ-adaptation Iterative QPE and its HHL algorithm.
Results indicate that noise mitigation techniques, such as Qiskit readout and Mthree readout packages, are insufficient for enabling results recovery even in the small instances tested here.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing promises enabling solving large problem instances, e.g. large linear equation systems with HHL algorithm, once the hardware stack matures. For the foreseeable future quantum computing will remain in the so-called NISQ era, in which the algorithms need to account for the flaws of the hardware such as noise. In this work, we perform an empirical study to test scaling properties and directly related noise resilience of the the most resources-intense component of the HHL algorithm, namely QPE and its NISQ-adaptation Iterative QPE. We explore the effectiveness of noise mitigation techniques for these algorithms and investigate whether we can keep the gate number low by enforcing sparsity constraints on the input or using circuit optimization techniques provided by Qiskit package. Our results indicate that currently available noise mitigation techniques, such as Qiskit readout and Mthree readout packages, are insufficient for enabling results recovery even in the small instances tested here. Moreover, our results indicate that the scaling of these algorithms with increase in precision seems to be the most substantial obstacle. These insights allowed us to deduce an approximate bottleneck for algorithms that consider a similar time evolution as QPE. Such observations provide evidence of weaknesses of such algorithms on NISQ devices and help us formulate meaningful future research directions.
Related papers
- Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
This paper investigates the scalability and noise resilience of quantum generative learning applications.
We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms.
We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
arXiv Detail & Related papers (2024-03-27T15:05:55Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
Variational Quantum Eigensolver (VQE) is a promising algorithm for solving complex quantum problems.
The ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes.
This research introduces a novel approach by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations.
arXiv Detail & Related papers (2024-03-10T15:35:41Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Stressing Out Modern Quantum Hardware: Performance Evaluation and
Execution Insights [2.2091590689610823]
Stress testing is a technique used to evaluate a system by giving it a computational load beyond its specified thresholds.
We conduct a qualitative and quantitative evaluation of the Quantinuum H1 ion trap device using a stress test based protocol.
arXiv Detail & Related papers (2024-01-24T20:22:34Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Topological data analysis on noisy quantum computers [11.975008559320875]
Topological data analysis (TDA) is a powerful technique for extracting complex and valuable shape-related summaries of high-dimensional data.
The computational demands of classical algorithms for computing TDA are exorbitant, and quickly become impractical for high-order characteristics.
We present a fully implemented end-to-end quantum machine learning algorithm that is applicable to high-dimensional classical data.
arXiv Detail & Related papers (2022-09-19T22:45:00Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum
Algorithms [51.02972483763309]
Variational Quantum Algorithms (VQAs) are promising candidates for finding practical applications of quantum computers.
This work is accompanied by the release of the open-source Python package $textitorqviz$, which provides code to compute and flexibly plot 1D and 2D scans.
arXiv Detail & Related papers (2021-11-08T18:17:59Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
We propose an efficient quantum algorithm for solving one-dimensional Poisson equation.
We further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
We analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit.
arXiv Detail & Related papers (2021-08-27T09:44:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.