論文の概要: Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset
- arxiv url: http://arxiv.org/abs/2406.06307v1
- Date: Mon, 10 Jun 2024 14:23:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:48:15.988199
- Title: Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset
- Title(参考訳): 古典的臨床データセットのための連続量子古典ベイズニューラルネットワークの構築
- Authors: Alona Sakhnenko, Julian Sikora, Jeanette Miriam Lorenz,
- Abstract要約: 本稿では,医学データセットの不確実性を考慮した分類を行う量子古典ベイズニューラルネットワーク(QCBNN)を提案する。
予測性能とモデルの不確実性の両方を捉える複数の行動メトリクスを追跡します。
より不確実な方法でサンプルを分類できるハイブリッドモデルを作ることは、私たちの野望です。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we are introducing a Quantum-Classical Bayesian Neural Network (QCBNN) that is capable to perform uncertainty-aware classification of classical medical dataset. This model is a symbiosis of a classical Convolutional NN that performs ultra-sound image processing and a quantum circuit that generates its stochastic weights, within a Bayesian learning framework. To test the utility of this idea for the possible future deployment in the medical sector we track multiple behavioral metrics that capture both predictive performance as well as model's uncertainty. It is our ambition to create a hybrid model that is capable to classify samples in a more uncertainty aware fashion, which will advance the trustworthiness of these models and thus bring us step closer to utilizing them in the industry. We test multiple setups for quantum circuit for this task, and our best architectures display bigger uncertainty gap between correctly and incorrectly identified samples than its classical benchmark at an expense of a slight drop in predictive performance. The innovation of this paper is two-fold: (1) combining of different approaches that allow the stochastic weights from the quantum circuit to be continues thus allowing the model to classify application-driven dataset; (2) studying architectural features of quantum circuit that make-or-break these models, which pave the way into further investigation of more informed architectural designs.
- Abstract(参考訳): 本研究では,古典医学データセットの不確実性を考慮した分類を行う量子古典ベイズニューラルネットワーク(QCBNN)を提案する。
このモデルは、ベイズ学習フレームワーク内で、超音速画像処理を行う古典的畳み込みNNと、その確率重みを生成する量子回路の共生である。
医療セクターにおける将来的な展開の可能性について、このアイデアの有用性をテストするために、予測性能とモデルの不確実性の両方を捉える複数の行動指標を追跡します。
より不確実性を意識した方法でサンプルを分類し、これらのモデルの信頼性を向上し、業界でそれらを活用するための一歩を踏み出すことができるハイブリッドモデルを作ることは、私たちの野望です。
このタスクのために、量子回路の複数のセットアップをテストし、最良のアーキテクチャは、予測性能のわずかな低下を犠牲にして、従来のベンチマークよりも、正しく、正しく特定されたサンプル間の大きな不確実性ギャップを示す。
本論文の革新は,(1) 量子回路からの確率重み付けを継続し,そのモデルがアプリケーション駆動型データセットを分類できるようにするための異なるアプローチを組み合わせること,(2) これらのモデルの作成または破壊を行う量子回路のアーキテクチャ特性を研究すること,そして,より詳細なアーキテクチャ設計のさらなる研究への道を開くこと,の2つである。
関連論文リスト
- Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
量子ニューラルネットワーク(QNN)に焦点をあてた量子機械学習は、いまだに膨大な研究分野である。
適応可能な中間層とノードの観点から,従来のFFNNの汎用性とシームレスに整合するボナフェイドQNNモデルを提案する。
本研究では,診断乳がん(Wisconsin)やクレジットカード不正検出データセットなど,さまざまなベンチマークデータセットを用いて提案モデルを検証した。
論文 参考訳(メタデータ) (2024-02-01T15:13:26Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,知識蒸留を用いた古典的ニューラルネットワークから量子ニューラルネットワークへ知識を伝達する新しい手法を提案する。
我々は、LeNetやAlexNetのような古典的畳み込みニューラルネットワーク(CNN)アーキテクチャを教師ネットワークとして活用する。
量子モデルは、MNISTデータセットで0.80%、より複雑なFashion MNISTデータセットで5.40%の平均精度改善を達成する。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Binary classifiers for noisy datasets: a comparative study of existing
quantum machine learning frameworks and some new approaches [0.0]
バイナリ分類を改善するためにQuantum Machine Learningフレームワークを適用した。
ノイズの多いデータセットは 財務的なデータセットの中にあります
新しいモデルでは、データセットの非対称ノイズに対する学習特性が向上する。
論文 参考訳(メタデータ) (2021-11-05T10:29:05Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Quantum Self-Supervised Learning [22.953284192004034]
対照的自己監督学習のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
ibmq_paris量子コンピュータ上の見えない画像を分類するために、最良の量子モデルを適用します。
論文 参考訳(メタデータ) (2021-03-26T18:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。