論文の概要: An end-to-end trainable hybrid classical-quantum classifier
- arxiv url: http://arxiv.org/abs/2102.02416v1
- Date: Thu, 4 Feb 2021 05:19:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-05 16:03:30.305673
- Title: An end-to-end trainable hybrid classical-quantum classifier
- Title(参考訳): エンドツーエンドのトレーニング可能なハイブリッド古典量子分類器
- Authors: Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing and Ying-Jer Kao
- Abstract要約: 量子インスパイアされたテンソルネットワークと変分量子回路を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
このアーキテクチャにより、モデルの古典的および量子的部分を同時にトレーニングすることができ、エンドツーエンドのトレーニングフレームワークを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a hybrid model combining a quantum-inspired tensor network and a
variational quantum circuit to perform supervised learning tasks. This
architecture allows for the classical and quantum parts of the model to be
trained simultaneously, providing an end-to-end training framework. We show
that compared to the principal component analysis, a tensor network based on
the matrix product state with low bond dimensions performs better as a feature
extractor for the input data of the variational quantum circuit in the binary
and ternary classification of MNIST and Fashion-MNIST datasets. The
architecture is highly adaptable and the classical-quantum boundary can be
adjusted according the availability of the quantum resource by exploiting the
correspondence between tensor networks and quantum circuits.
- Abstract(参考訳): 量子インスパイアされたテンソルネットワークと変分量子回路を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
このアーキテクチャは、モデルの古典的部分と量子部分を同時にトレーニングし、エンドツーエンドのトレーニングフレームワークを提供する。
また, 主成分分析と比較して, 結合次元の低い行列積状態に基づくテンソルネットワークは, mnist および fashion-mnist データセットの二元および三元分類における変分量子回路の入力データの特徴抽出器として優れていることを示した。
アーキテクチャは高度に適応可能であり、テンソルネットワークと量子回路の対応を利用して量子資源の可用性に応じて古典量子境界を調整できる。
関連論文リスト
- Quantum Large Language Models via Tensor Network Disentanglers [0.0]
本稿では,量子コンピューティングと量子インスパイアされた技術を統合することで,Large Language Models(LLM)の性能を向上させる手法を提案する。
我々のアプローチは、自己保持層と多層パーセプトロン層における重み行列を、2つの変分量子回路と量子インスパイアされたテンソルネットワークの組み合わせで置き換えることである。
論文 参考訳(メタデータ) (2024-10-22T20:12:04Z) - Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
本稿では,4量子ビット量子回路と古典的ニューラルネットワークを組み合わせた,分類タスクのためのハイブリッド量子古典型機械学習モデルを提案する。
このモデルは20エポック以上で訓練され、16エポックに設定されたIrisデータセットテストで100%の精度を達成した。
この研究は、ハイブリッド量子古典モデルの研究の活発化と、実際のデータセットへの適用性に寄与する。
論文 参考訳(メタデータ) (2024-10-21T13:15:12Z) - Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
量子トレイン(Quantum-Train、QT)は、量子古典機械学習のハイブリッドフレームワークである。
量子状態の測定を古典的なニューラルネットワークの重みにマッピングする。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
複数の小さな量子処理ユニットノードを持つ大規模量子機械学習用に設計された分散回路アンサッツを提案する。
論文 参考訳(メタデータ) (2024-09-11T03:51:34Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Disentangling Quantum and Classical Contributions in Hybrid Quantum
Machine Learning Architectures [4.646930308096446]
ハイブリッドトランスファー学習ソリューションが開発され、訓練済みの古典モデルと量子回路を融合した。
それぞれのコンポーネント(古典的、量子的)がモデルの結果にどの程度貢献するかは、まだ不明である。
本稿では,プレトレーニングされたネットワークを圧縮に利用する代わりに,オートエンコーダを用いて,圧縮したデータから圧縮したデータを導出するハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-09T18:13:50Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit [0.0]
本稿では、量子インスパイアされたテンソルネットワーク(TN)と変分量子回路(VQC)を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-30T09:43:59Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。