論文の概要: MedExQA: Medical Question Answering Benchmark with Multiple Explanations
- arxiv url: http://arxiv.org/abs/2406.06331v1
- Date: Mon, 10 Jun 2024 14:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:38:29.284236
- Title: MedExQA: Medical Question Answering Benchmark with Multiple Explanations
- Title(参考訳): MedExQA: 複数説明付きベンチマークで回答する医療質問
- Authors: Yunsoo Kim, Jinge Wu, Yusuf Abdulle, Honghan Wu,
- Abstract要約: 本稿では,MedExQAについて紹介する。MedExQAは,医学的知識に関する大規模言語モデル (LLM) の理解を説明を通じて評価するための,医学的質問応答の新しいベンチマークである。
5つの異なる医療専門分野のデータセットを構築することで、現在の医療QAベンチマークの大きなギャップに対処する。
本研究は、医学LLMにおける説明可能性の重要性を強調し、分類精度以上のモデルを評価する効果的な方法論を提案し、特定の分野である音声言語病理学に光を当てる。
- 参考スコア(独自算出の注目度): 2.2246416434538308
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces MedExQA, a novel benchmark in medical question-answering, to evaluate large language models' (LLMs) understanding of medical knowledge through explanations. By constructing datasets across five distinct medical specialties that are underrepresented in current datasets and further incorporating multiple explanations for each question-answer pair, we address a major gap in current medical QA benchmarks which is the absence of comprehensive assessments of LLMs' ability to generate nuanced medical explanations. Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology, where current LLMs including GPT4 lack good understanding. Our results show generation evaluation with multiple explanations aligns better with human assessment, highlighting an opportunity for a more robust automated comprehension assessment for LLMs. To diversify open-source medical LLMs (currently mostly based on Llama2), this work also proposes a new medical model, MedPhi-2, based on Phi-2 (2.7B). The model outperformed medical LLMs based on Llama2-70B in generating explanations, showing its effectiveness in the resource-constrained medical domain. We will share our benchmark datasets and the trained model.
- Abstract(参考訳): 本稿では,医学的質問応答の新たなベンチマークであるMedExQAを紹介し,説明を通じて医学的知識に対する大規模言語モデル(LLM)の理解を評価する。
現在の5つの専門分野にまたがるデータセットを構築し,各問合せペアに複数の説明を組み込むことで,LCMの詳細な診断能力が欠如している現状のQAベンチマークにおいて大きなギャップを解消する。
本研究は,医学 LLM における説明可能性の重要性を強調し,分類精度以上のモデルを評価する効果的な方法論を提案し,GPT4 を含む現在の LLM の理解が不十分な特定の領域である音声言語病理に光を当てる。
その結果,複数説明による生成評価は人的評価とよく一致し,LLMのより堅牢な自動理解評価の機会が浮かび上がった。
オープンソースの医療用LLM(現在はLlama2)を多角化するために、Phi-2 (2.7B) に基づいた新しい医療モデル MedPhi-2 を提案する。
このモデルはLlama2-70Bをベースとした医療用LLMよりも優れており,資源制約された医療領域での有効性が示された。
ベンチマークデータセットとトレーニングされたモデルを共有します。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Large Language Models for Medical OSCE Assessment: A Novel Approach to Transcript Analysis [0.0]
テキサス大学サウスウェスタン医療センター(UTSW)における2,027件のビデオ録画OSCE検査について検討した。
本研究は, 学生の要約作業において, LLMに基づく様々な手法による評価を行い, 評価書に基づいて評価を行った。
以上の結果から, GPT-4のようなフロンティアLLMモデルでは, 人間の学級とのアライメントが顕著であった。
論文 参考訳(メタデータ) (2024-10-11T19:16:03Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - MultifacetEval: Multifaceted Evaluation to Probe LLMs in Mastering Medical Knowledge [4.8004472307210255]
大規模言語モデル (LLMs) はドメイン間で優れており、医療評価ベンチマークで顕著なパフォーマンスを提供している。
しかし、実際の医療シナリオにおける報告されたパフォーマンスと実践的効果の間には、依然として大きなギャップがある。
医療知識のエンコーディングと習得におけるLLMの程度と範囲を検討するための,新しい評価フレームワークであるMultifacetEvalを開発した。
論文 参考訳(メタデータ) (2024-06-05T04:15:07Z) - Med42 -- Evaluating Fine-Tuning Strategies for Medical LLMs: Full-Parameter vs. Parameter-Efficient Approaches [7.3384872719063114]
我々は,Llama-2アーキテクチャに基づく医療用大規模言語モデル(LLM)を開発し,改良した。
本実験は,様々な医用ベンチマークを用いて,これらのチューニング戦略の有効性を体系的に評価した。
論文 参考訳(メタデータ) (2024-04-23T06:36:21Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQAは医学専門分野における総合的なベンチマークである。
本稿では医学専門分野の総合的なベンチマークであるRJUA-MedDQAを紹介する。
論文 参考訳(メタデータ) (2024-02-19T06:57:02Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
中国の医療分野の総合的なベンチマークであるMedBenchを紹介する。
このベンチマークは、中国の医療ライセンス試験、居住者標準化訓練試験、および現実世界のクリニックの4つの主要なコンポーネントで構成されている。
幅広い実験を行い, 多様な視点から詳細な分析を行い, 以下の結果を得た。
論文 参考訳(メタデータ) (2023-12-20T07:01:49Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
本稿では, 現実性, 正確性, 潜在的害, バイアスを含む複数の軸に沿ったモデル回答の人為的評価のための枠組みを提案する。
本研究は,モデル尺度とインストラクション・インシデント・チューニングにより,理解,知識の想起,医学的推論が向上することを示す。
論文 参考訳(メタデータ) (2022-12-26T14:28:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。