論文の概要: STimage-1K4M: A histopathology image-gene expression dataset for spatial transcriptomics
- arxiv url: http://arxiv.org/abs/2406.06393v2
- Date: Thu, 20 Jun 2024 17:38:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 01:26:51.692869
- Title: STimage-1K4M: A histopathology image-gene expression dataset for spatial transcriptomics
- Title(参考訳): STimage-1K4M:空間転写学のための病理組織像-遺伝子発現データセット
- Authors: Jiawen Chen, Muqing Zhou, Wenrong Wu, Jinwei Zhang, Yun Li, Didong Li,
- Abstract要約: STimage-1K4Mは、サブタイル画像にゲノム機能を提供することでギャップを埋めるように設計された新しいデータセットである。
4,293,195対のサブタイル画像と遺伝子発現を持ち、STimage-1K4Mは前例のない粒度を持つ。
- 参考スコア(独自算出の注目度): 8.881820519705592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in multi-modal algorithms have driven and been driven by the increasing availability of large image-text datasets, leading to significant strides in various fields, including computational pathology. However, in most existing medical image-text datasets, the text typically provides high-level summaries that may not sufficiently describe sub-tile regions within a large pathology image. For example, an image might cover an extensive tissue area containing cancerous and healthy regions, but the accompanying text might only specify that this image is a cancer slide, lacking the nuanced details needed for in-depth analysis. In this study, we introduce STimage-1K4M, a novel dataset designed to bridge this gap by providing genomic features for sub-tile images. STimage-1K4M contains 1,149 images derived from spatial transcriptomics data, which captures gene expression information at the level of individual spatial spots within a pathology image. Specifically, each image in the dataset is broken down into smaller sub-image tiles, with each tile paired with 15,000-30,000 dimensional gene expressions. With 4,293,195 pairs of sub-tile images and gene expressions, STimage-1K4M offers unprecedented granularity, paving the way for a wide range of advanced research in multi-modal data analysis an innovative applications in computational pathology, and beyond.
- Abstract(参考訳): マルチモーダルアルゴリズムの最近の進歩は、大規模な画像テキストデータセットの利用可能化によって推進され、推進され、計算病理学を含む様々な分野において大きな進歩をもたらした。
しかし、既存の多くの医用画像テキストデータセットでは、このテキストは典型的には、大きな病理画像内のサブタイル領域を十分に記述していないハイレベルな要約を提供する。
例えば、画像は、がん領域と健康領域を含む広範囲の組織領域をカバーするかもしれないが、付随するテキストは、この画像ががんスライドであることのみを指定し、詳細な分析に必要な詳細を欠いている。
本研究では,サブタイル画像にゲノム機能を提供することで,このギャップを埋める新しいデータセットであるSTimage-1K4Mを紹介する。
STimage-1K4Mは、病的画像内の個々の空間スポットのレベルで遺伝子発現情報をキャプチャする空間転写データから導出された1,149個の画像を含む。
具体的には、データセットの各画像は小さなサブイメージタイルに分解され、各タイルは15,000-30,000次元の遺伝子発現とペアリングされる。
4,293,195対のサブタイル画像と遺伝子発現により、STimage-1K4Mは前例のない粒度を提供し、マルチモーダルデータ解析における幅広い先進的な研究の道を開いた。
関連論文リスト
- Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization [18.554968935341236]
本稿では,HSIC-bottleneck Regularization (ST-GCHB) を用いたマルチビューグラフ比較学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-18T03:07:25Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - Could We Generate Cytology Images from Histopathology Images? An Empirical Study [1.791005104399795]
本研究では,CycleGANやNeural Style Transferといった従来の画像間転送モデルについて検討した。
本研究では,CycleGANやNeural Style Transferといった従来の画像間転送モデルについて検討した。
論文 参考訳(メタデータ) (2024-03-16T10:43:12Z) - Text-guided Foundation Model Adaptation for Pathological Image
Classification [40.45252665455015]
本稿では、画像とテキストの埋め込み(CITE)を結合して、病理画像分類を強化することを提案する。
CITEは、幅広いバイオメディカルテキストで事前訓練された言語モデルから得られたテキスト洞察を注入し、病理画像理解に基礎モデルを適用する。
論文 参考訳(メタデータ) (2023-07-27T14:44:56Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - MTNeuro: A Benchmark for Evaluating Representations of Brain Structure
Across Multiple Levels of Abstraction [0.0]
脳のマッピングでは、画像を自動的に解析して、小さな特徴とグローバルな特性の両方の表現を構築することは、決定的かつオープンな課題である。
我々のベンチマーク(MTNeuro)は、マウス脳の広い領域にまたがる体積分解能X線マイクロトモグラフィー画像に基づいている。
我々は様々な予測課題を生み出し、脳領域予測と画素レベルの微構造セマンティックセマンティックセグメンテーションのための教師付きおよび自己教師型モデルを評価した。
論文 参考訳(メタデータ) (2023-01-01T04:54:03Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Multiscale Analysis for Improving Texture Classification [62.226224120400026]
本稿では,テクスチャの異なる空間周波数帯域を別々に扱うために,ガウス・ラプラシアピラミッドを用いる。
バイオインスパイアされたテクスチャ記述子,情報理論測度,灰色レベルの共起行列特徴,ハリリック統計特徴から抽出した特徴を特徴ベクトルに集約した。
論文 参考訳(メタデータ) (2022-04-21T01:32:22Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-Texture GAN: Exploring the Multi-Scale Texture Translation for
Brain MR Images [1.9163481966968943]
既存のアルゴリズムのかなりの割合は、ターゲットスキャナーからテクスチャの詳細を明示的に利用し保存することはできない。
本論文では,再構成イメージをより詳細に強調するために,マルチスケールテクスチャ転送の設計を行う。
本手法は,最先端手法において,プロトコール間あるいはスカンナ間翻訳において優れた結果が得られる。
論文 参考訳(メタデータ) (2021-02-14T19:14:06Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。