論文の概要: High-Resolution Spatial Transcriptomics from Histology Images using HisToSGE
- arxiv url: http://arxiv.org/abs/2407.20518v1
- Date: Tue, 30 Jul 2024 03:29:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:28:58.103093
- Title: High-Resolution Spatial Transcriptomics from Histology Images using HisToSGE
- Title(参考訳): HisToSGEを用いた組織像からの高分解能空間トランスクリプト
- Authors: Zhiceng Shi, Shuailin Xue, Fangfang Zhu, Wenwen Min,
- Abstract要約: HisToSGEは、組織像から高分解能な遺伝子発現プロファイルを生成する。
HisToSGEは高解像度の遺伝子発現プロファイルを生成し、下流タスクを実行するのに優れている。
- 参考スコア(独自算出の注目度): 1.3124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial transcriptomics (ST) is a groundbreaking genomic technology that enables spatial localization analysis of gene expression within tissue sections. However, it is significantly limited by high costs and sparse spatial resolution. An alternative, more cost-effective strategy is to use deep learning methods to predict high-density gene expression profiles from histological images. However, existing methods struggle to capture rich image features effectively or rely on low-dimensional positional coordinates, making it difficult to accurately predict high-resolution gene expression profiles. To address these limitations, we developed HisToSGE, a method that employs a Pathology Image Large Model (PILM) to extract rich image features from histological images and utilizes a feature learning module to robustly generate high-resolution gene expression profiles. We evaluated HisToSGE on four ST datasets, comparing its performance with five state-of-the-art baseline methods. The results demonstrate that HisToSGE excels in generating high-resolution gene expression profiles and performing downstream tasks such as spatial domain identification. All code and public datasets used in this paper are available at https://github.com/wenwenmin/HisToSGE and https://zenodo.org/records/12792163.
- Abstract(参考訳): 空間転写学(Spatial transcriptomics、ST)は、組織領域における遺伝子発現の空間的局在解析を可能にする、画期的なゲノム技術である。
しかし、高いコストと空間分解能によって著しく制限されている。
よりコスト効率のよい戦略は、深層学習法を用いて、組織像から高密度の遺伝子発現プロファイルを予測することである。
しかし、既存の手法では、リッチな画像の特徴を効果的に捉えたり、低次元の位置座標に依存したりすることは困難であり、高解像度の遺伝子発現プロファイルを正確に予測することは困難である。
これらの制約に対処するため,病理画像大モデル(PILM)を用いて,画像からリッチな画像特徴を抽出し,高解像度の遺伝子発現プロファイルを堅牢に生成する特徴学習モジュールであるHisToSGEを開発した。
我々は、HisToSGEを4つのSTデータセットで評価し、その性能を5つの最先端ベースライン手法と比較した。
その結果、HisToSGEは高分解能な遺伝子発現プロファイルを生成し、空間領域識別などの下流タスクを実行するのに優れていた。
この論文で使用されるコードと公開データセットはすべて、https://github.com/wenwenmin/HisToSGEとhttps://zenodo.org/records/12792163で利用可能である。
関連論文リスト
- MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images [6.717786190771243]
MERGE(Multifaceted hiErarchical gRaph for Gene Expressions)を導入し、階層グラフ構築戦略とグラフニューラルネットワーク(GNN)を組み合わせて、スライド画像全体の遺伝子発現予測を改善する。
組織像パッチを空間的特徴と形態的特徴の両方に基づいてクラスタリングすることにより,GNN学習における遠隔組織間の相互作用を促進する。
さらに,STデータ中のアーティファクトを緩和するために必要な異なるデータ平滑化技術の評価を行った。
論文 参考訳(メタデータ) (2024-12-03T17:32:05Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
空間転写学(spatial transcriptomics, ST)は、空間的文脈を保ちながら、転写産物全体の遺伝子発現プロファイリングを可能にする。
現在の空間クラスタリング法では、高解像度の組織像と遺伝子発現データを完全に統合することができない。
本稿では、遺伝子発現データと組織像の特徴を融合した、新しいコントラスト学習に基づく深層学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T00:32:24Z) - Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization [18.554968935341236]
本稿では,HSIC-bottleneck Regularization (ST-GCHB) を用いたマルチビューグラフ比較学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-18T03:07:25Z) - Cross-modal Diffusion Modelling for Super-resolved Spatial Transcriptomics [5.020980014307814]
空間転写学は、発見研究のための組織内の空間遺伝子発現を特徴づけることができる。
超高分解能アプローチは、組織像とプロファイルされた組織スポットの遺伝子発現を統合することでSTマップを強化することを約束する。
本稿では, 組織像の誘導による超解像STマップのクロスモーダル拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-04-19T16:01:00Z) - An efficient dual-branch framework via implicit self-texture enhancement for arbitrary-scale histopathology image super-resolution [18.881480825169053]
Inlicit Self-Texture Enhancement-based dual-branch framework (ISTE) を提案する。
ISTEは、様々なスケーリング要因にわたる既存の固定スケールおよび任意のスケールのSRアルゴリズムより優れている。
論文 参考訳(メタデータ) (2024-01-28T10:00:45Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
そこで我々は,高品質な病理像を生成するためのテキスト条件付き遅延拡散モデルPathLDMを紹介した。
提案手法は画像とテキストデータを融合して生成プロセスを強化する。
我々は,TCGA-BRCAデータセット上でのテキスト・ツー・イメージ生成において,SoTA FIDスコア7.64を達成し,FID30.1と最も近いテキスト・コンディショナブル・コンペティタを著しく上回った。
論文 参考訳(メタデータ) (2023-09-01T22:08:32Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
画像中の新型コロナウイルス感染領域セグメンテーションの長距離依存性のモデリングを強化するために,PSGRモジュールを提案する。
PSGRモジュールは不正確なピクセルからノードへの投影を回避し、グローバルな推論のために各ピクセル固有の情報を保存する。
このソリューションは、3つの公開データセット上の4つの広く使われているセグメンテーションモデルに対して評価されている。
論文 参考訳(メタデータ) (2021-08-09T04:58:23Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。