論文の概要: Robust Distribution Learning with Local and Global Adversarial Corruptions
- arxiv url: http://arxiv.org/abs/2406.06509v1
- Date: Mon, 10 Jun 2024 17:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 12:39:47.943215
- Title: Robust Distribution Learning with Local and Global Adversarial Corruptions
- Title(参考訳): 局所的・大域的破壊によるロバスト分布学習
- Authors: Sloan Nietert, Ziv Goldfeld, Soroosh Shafiee,
- Abstract要約: 誤差を$sqrtvarepsilon k + rho + dO(1)tildeO(n-1/k)$で有界な有限サンプルアルゴリズムを開発する。
我々は、ワッサーシュタインの分布的ロバストな最適化において、次元性の呪いを克服する新しい方法を発見した。
- 参考スコア(独自算出の注目度): 17.22168727622332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider learning in an adversarial environment, where an $\varepsilon$-fraction of samples from a distribution $P$ are arbitrarily modified (*global* corruptions) and the remaining perturbations have average magnitude bounded by $\rho$ (*local* corruptions). Given access to $n$ such corrupted samples, we seek a computationally efficient estimator $\hat{P}_n$ that minimizes the Wasserstein distance $\mathsf{W}_1(\hat{P}_n,P)$. In fact, we attack the fine-grained task of minimizing $\mathsf{W}_1(\Pi_\# \hat{P}_n, \Pi_\# P)$ for all orthogonal projections $\Pi \in \mathbb{R}^{d \times d}$, with performance scaling with $\mathrm{rank}(\Pi) = k$. This allows us to account simultaneously for mean estimation ($k=1$), distribution estimation ($k=d$), as well as the settings interpolating between these two extremes. We characterize the optimal population-limit risk for this task and then develop an efficient finite-sample algorithm with error bounded by $\sqrt{\varepsilon k} + \rho + d^{O(1)}\tilde{O}(n^{-1/k})$ when $P$ has bounded moments of order $2+\delta$, for constant $\delta > 0$. For data distributions with bounded covariance, our finite-sample bounds match the minimax population-level optimum for large sample sizes. Our efficient procedure relies on a novel trace norm approximation of an ideal yet intractable 2-Wasserstein projection estimator. We apply this algorithm to robust stochastic optimization, and, in the process, uncover a new method for overcoming the curse of dimensionality in Wasserstein distributionally robust optimization.
- Abstract(参考訳): P$の分布からのサンプルの$\varepsilon$-fractionが任意に修正され(*global*の汚職)、残りの摂動は$\rho$(*local*の汚職)によって境界づけられる。
そのような破損したサンプルを$n$ にすると、ワッサーシュタイン距離 $\mathsf{W}_1(\hat{P}_n,P)$ を最小化する計算効率の良い推定器 $\hat{P}_n$ を求める。
実際、すべての直交射影に対して$\Pi_\# \hat{P}_1(\Pi_\# \hat{P}_n, \Pi_\# P)$を最小化するきめ細かいタスクを、$\Pi \in \mathbb{R}^{d \times d}$で、$\mathrm{rank}(\Pi) = k$でスケーリングする。
これにより、平均推定(k=1$)、分布推定(k=d$)、およびこれら2つの極端な間を補間する設定を同時に説明できます。
このタスクの最適集団制限リスクを特徴付け、次に$\sqrt{\varepsilon k} + \rho + d^{O(1)}\tilde{O}(n^{-1/k})$ で有界な誤差を持つ効率的な有限サンプルアルゴリズムを開発する。
有界共分散を持つデータ分布の場合、我々の有限サンプル境界は、大きなサンプルサイズに対して最小値の集団レベルの最適値と一致する。
我々の効率的な手順は、理想的だが難解な2-ワッサーシュタイン射影推定器の新たなトレースノルム近似に依存する。
このアルゴリズムを頑健な確率的最適化に適用し、その過程で、ワッサーシュタインの分布的ロバストな最適化における次元性の呪いを克服する新しい方法を明らかにする。
関連論文リスト
- Multiple-policy Evaluation via Density Estimation [30.914344538340412]
本稿では,この問題に対して$mathrmCAESAR$というアルゴリズムを提案する。
低次かつ対数的な$mathrmCAESAR$は、$tildeOleft(fracH4epsilon2sum_h=1Hmax_kin[K]sum_s,afrac(d_hpik(s,a))2mu*_h(s,a)right)$である。
論文 参考訳(メタデータ) (2024-03-29T23:55:25Z) - Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination [42.526664955704746]
本研究では,平均推定,PCA,線形回帰に着目したハマー汚染モデルにおけるスパース推定タスクについて検討する。
それぞれのタスクに対して、最適なエラー保証を備えた最初のサンプルと計算効率の良い頑健な推定器を与える。
技術レベルでは、スパース方式における新しい多次元フィルタリング法を開発し、他の応用を見出すことができる。
論文 参考訳(メタデータ) (2024-03-15T15:51:27Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
この研究は、平均報酬マルコフ決定過程(AMDP)における$varepsilon$-Optimal Policyを得る際のサンプルの複雑さを考察する。
我々は、状態-作用対当たりの$widetilde O(H varepsilon-3 ln frac1delta)$サンプルを証明し、$H := sp(h*)$は任意の最適ポリシーのバイアスのスパンであり、$varepsilon$は精度、$delta$は失敗確率である。
論文 参考訳(メタデータ) (2022-12-01T15:57:58Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
最も強力で成功したモダリティの1つは、全ての分布を$ell$距離に近似し、基本的に最も近い$t$-piece次数-$d_$の少なくとも1倍大きい。
本稿では,この数値をほぼ最適に推定する手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T03:49:28Z) - Sampling from Log-Concave Distributions with Infinity-Distance
Guarantees and Applications to Differentially Private Optimization [33.38289436686841]
本稿では,dis distributionO(varepsilon)$close から$ infinity-distance に点を出力するアルゴリズムを提案する。
また、ディキンウォークの「ソフトパイ」バージョンも提示する。
論文 参考訳(メタデータ) (2021-11-07T13:44:50Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
高次元におけるリストデコタブル平均推定の基本的な課題について検討する。
我々のアルゴリズムは、すべての$k = O(sqrtd) cup Omega(d)$に対して$widetildeO(ndk)$で実行されます。
我々のアルゴリズムの変種は、すべての$k$に対してランタイム$widetildeO(ndk)$を持ち、リカバリ保証の$O(sqrtlog k)$ Factorを犠牲にしている。
論文 参考訳(メタデータ) (2020-11-19T17:21:37Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
我々は、$det(sum_i in Sv_i v_i v_itop)$が最大になるような基底を$S$$$$M$とする問題を研究する。
この問題は、実験的なデザイン、商品の公平な割り当て、ネットワーク設計、機械学習など、さまざまな分野に現れている。
論文 参考訳(メタデータ) (2020-04-16T19:16:38Z) - List-Decodable Subspace Recovery: Dimension Independent Error in
Polynomial Time [5.812499828391904]
リスト化可能部分空間のリカバリにおいて、入力は$n$ポイント$alpha n$(ある$alpha ll 1/2$)の集合であり、それらは分布$mathcalD$から引き出される。
本研究は, より高速な固定ポリノミカルランニング時間を用いて, アンフェクタブルな集中防止誤差の3つの側面について, 結果を改善するものである。
論文 参考訳(メタデータ) (2020-02-12T18:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。