Brainstorming Brings Power to Large Language Models of Knowledge Reasoning
- URL: http://arxiv.org/abs/2406.06561v1
- Date: Sun, 2 Jun 2024 14:47:14 GMT
- Title: Brainstorming Brings Power to Large Language Models of Knowledge Reasoning
- Authors: Zining Qin, Chenhao Wang, Huiling Qin, Weijia Jia,
- Abstract summary: Large Language Models (LLMs) have demonstrated amazing capabilities in language generation, text comprehension, and knowledge reasoning.
Recent studies have further improved the model's reasoning ability on a wide range of tasks by introducing multi-model collaboration.
We propose the multi-model brainstorming based on prompt. It incorporates different models into a group for brainstorming, and after multiple rounds of reasoning elaboration and re-inference, a consensus answer is reached.
- Score: 17.14501985068287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated amazing capabilities in language generation, text comprehension, and knowledge reasoning. While a single powerful model can already handle multiple tasks, relying on a single perspective can lead to biased and unstable results. Recent studies have further improved the model's reasoning ability on a wide range of tasks by introducing multi-model collaboration. However, models with different capabilities may produce conflicting answers on the same problem, and how to reasonably obtain the correct answer from multiple candidate models has become a challenging problem. In this paper, we propose the multi-model brainstorming based on prompt. It incorporates different models into a group for brainstorming, and after multiple rounds of reasoning elaboration and re-inference, a consensus answer is reached within the group. We conducted experiments on three different types of datasets, and demonstrate that the brainstorming can significantly improve the effectiveness in logical reasoning and fact extraction. Furthermore, we find that two small-parameter models can achieve accuracy approximating that of larger-parameter models through brainstorming, which provides a new solution for distributed deployment of LLMs.
Related papers
- Explaining latent representations of generative models with large multimodal models [5.9908087713968925]
Learning interpretable representations of data generative latent factors is an important topic for the development of artificial intelligence.
We propose a framework to comprehensively explain each latent variable in the generative models using a large multimodal model.
arXiv Detail & Related papers (2024-02-02T19:28:33Z) - Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training [49.3242278912771]
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions.
Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework.
We propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process.
arXiv Detail & Related papers (2023-11-23T17:09:48Z) - ACQUIRED: A Dataset for Answering Counterfactual Questions In Real-Life
Videos [53.92440577914417]
ACQUIRED consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints.
Each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal.
We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap.
arXiv Detail & Related papers (2023-11-02T22:17:03Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving.
We propose the $textitM3$ framework as a plug-in with negligible runtime overhead at test-time.
Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies.
arXiv Detail & Related papers (2023-10-12T16:06:18Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Large Language Models Are Reasoning Teachers [9.290757451344673]
Fine-tune-CoT is a method that generates reasoning samples from very large teacher models to fine-tune smaller models.
We find that Fine-tune-CoT enables substantial reasoning capability in small models, far outperforming prompt-based baselines and even the teacher model in many tasks.
arXiv Detail & Related papers (2022-12-20T08:24:45Z) - Composing Ensembles of Pre-trained Models via Iterative Consensus [95.10641301155232]
We propose a unified framework for composing ensembles of different pre-trained models.
We use pre-trained models as "generators" or "scorers" and compose them via closed-loop iterative consensus optimization.
We demonstrate that consensus achieved by an ensemble of scorers outperforms the feedback of a single scorer.
arXiv Detail & Related papers (2022-10-20T18:46:31Z) - Chain of Thought Prompting Elicits Reasoning in Large Language Models [56.811278668446825]
This paper explores the ability of language models to generate a coherent chain of thought.
Experiments show that inducing a chain of thought via prompting can enable sufficiently large language models to better perform reasoning tasks.
arXiv Detail & Related papers (2022-01-28T02:33:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.