論文の概要: Natural Language Interaction with a Household Electricity Knowledge-based Digital Twin
- arxiv url: http://arxiv.org/abs/2406.06566v3
- Date: Fri, 9 Aug 2024 13:35:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 18:19:02.443413
- Title: Natural Language Interaction with a Household Electricity Knowledge-based Digital Twin
- Title(参考訳): 家庭電気知識に基づくデジタル双生児との自然言語インタラクション
- Authors: Carolina Fortuna, Vid Hanžel, Blaž Bertalanič,
- Abstract要約: ドメイン固有のデジタルツインは、スマートグリッドの様々なセグメントのデジタルレプリカを表すもので、各セグメントをモデル化、シミュレート、制御することができる。
本稿では,RAG (Retrieval Augmented Generation) 質問応答の可能性を初めて評価し,報告する。
- 参考スコア(独自算出の注目度): 0.196629787330046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain specific digital twins, representing a digital replica of various segments of the smart grid, are foreseen as able to model, simulate, and control the respective segments. At the same time, knowledge-based digital twins, coupled with AI, may also empower humans to understand aspects of the system through natural language interaction in view of planning and policy making. This paper is the first to assess and report on the potential of Retrieval Augmented Generation (RAG) question answers related to household electrical energy measurement aspects leveraging a knowledge-based energy digital twin. Relying on the recently published electricity consumption knowledge graph that actually represents a knowledge-based digital twin, we study the capabilities of ChatGPT, Gemini and Llama in answering electricity related questions. Furthermore, we compare the answers with the ones generated through a RAG techniques that leverages an existing electricity knowledge-based digital twin. Our findings illustrate that the RAG approach not only reduces the incidence of incorrect information typically generated by LLMs but also significantly improves the quality of the output by grounding responses in verifiable data. This paper details our methodology, presents a comparative analysis of responses with and without RAG, and discusses the implications of our findings for future applications of AI in specialized sectors like energy data analysis.
- Abstract(参考訳): ドメイン固有のデジタルツインは、スマートグリッドの様々なセグメントのデジタルレプリカを表すもので、各セグメントをモデル化、シミュレート、制御することができる。
同時に、知識に基づくデジタルツインとAIが組み合わさって、計画と政策立案の観点から自然言語の相互作用を通じてシステムの側面を理解する力を与えるかもしれない。
本稿では,知識に基づくエネルギーデジタル双生児を活用した家庭用電気エネルギー測定におけるRAG (Retrieval Augmented Generation) 質問応答の可能性を初めて評価し,報告した。
知識に基づくデジタル双生児を実際に表現した,最近公開された電力消費知識グラフに基づいて,ChatGPT,Gemini,Llamaの電気関連質問に対する応答能力について検討した。
さらに,既存の電気知識に基づくディジタルツインを活用したRAG技術を用いて生成されたものとの比較を行った。
以上の結果から,RAG手法はLLMが生成する誤情報の発生を減少させるだけでなく,検証可能なデータに応答することで,出力の質を著しく向上させることがわかった。
本稿では、我々の方法論を詳述し、RAGを用いた応答と非応答の比較分析を行い、エネルギーデータ分析のような専門分野におけるAIの今後の応用について考察する。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Foundation Models for the Electric Power Grid [53.02072064670517]
ファンデーションモデル(FM)がニュースの見出しを支配している。
多様なグリッドデータやトポロジからFMを学習することで、トランスフォーメーション能力が解放されるのではないか、と私たちは主張する。
本稿では,グラフニューラルネットワークに基づく電力グリッドFMの概念,すなわちGridFMについて論じる。
論文 参考訳(メタデータ) (2024-07-12T17:09:47Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Dual Semantic Knowledge Composed Multimodal Dialog Systems [114.52730430047589]
本稿では,MDS-S2という新しいマルチモーダルタスク指向対話システムを提案する。
コンテキスト関連属性と関係知識を知識ベースから取得する。
また、合成された応答表現から意味情報を抽出するために、潜在クエリ変数のセットを考案する。
論文 参考訳(メタデータ) (2023-05-17T06:33:26Z) - Smart Home Energy Management: VAE-GAN synthetic dataset generator and
Q-learning [15.995891934245334]
本稿では,スマートホームにおけるエネルギー消費に関する時系列データを生成するための,変分自動エンコーダ生成対向ネットワーク(VAE-GAN)手法を提案する。
実世界のスマートホームデータを用いて,Qラーニングに基づくHEMSのオンラインパフォーマンスを検証した。
論文 参考訳(メタデータ) (2023-05-14T22:22:16Z) - Neuro-symbolic Explainable Artificial Intelligence Twin for Zero-touch
IoE in Wireless Network [61.90504487270785]
説明可能な人工知能(XAI)双対システムは、ゼロタッチネットワークとサービス管理(ZSM)の基本的な実現要因となる。
ZSMのための信頼性の高いXAIツインシステムは、すべてのインターネット(IoE)の物理的振る舞いを識別する極端な分析能力と、そのような振る舞いの推論を特徴付ける厳密な方法の2つの合成を必要とする。
無線IoEのための信頼性の高いZSMを実現するために、新しいニューロシンボリックな説明可能な人工知能ツインフレームワークが提案されている。
論文 参考訳(メタデータ) (2022-10-13T01:08:06Z) - Automated Extraction of Energy Systems Information from Remotely Sensed
Data: A Review and Analysis [10.137044808866053]
高品質なエネルギーシステム情報は、エネルギーシステムの研究、モデリング、意思決定にとって重要な入力である。
近年、リモートセンシングされたデータは、エネルギーシステム情報の豊富な情報源として浮上している。
機械学習の最近の進歩は、有用な情報の自動化と迅速な抽出を可能にしている。
論文 参考訳(メタデータ) (2022-02-18T14:38:49Z) - Machine learning methods for modelling and analysis of time series
signals in geoinformatics [2.193013035690221]
この論文は、異なる性質の時系列データセットと異なるアプリケーションに対して、複数のディープラーニング(DL)アーキテクチャの性能を評価する。
最初の問題は、多くのリアルタイム・グローバルナビゲーション・システム・サテライト(GNSS)アプリケーションにおいて重要な問題である電離層トータル・コンテント(TEC)モデリングに関連している。
次の問題はエネルギー分散であり、エネルギー効率とエネルギー消費意識にとって重要な問題である。
論文 参考訳(メタデータ) (2021-09-16T16:18:13Z) - Automatic digital twin data model generation of building energy systems
from piping and instrumentation diagrams [58.720142291102135]
建物からP&IDのシンボルや接続を自動で認識する手法を提案する。
シンボル認識,線認識,およびデータセットへの接続の導出にアルゴリズムを適用する。
このアプローチは、制御生成、(分散)モデル予測制御、障害検出といった、さらなるプロセスで使用することができる。
論文 参考訳(メタデータ) (2021-08-31T15:09:39Z) - The role of surrogate models in the development of digital twins of
dynamic systems [0.0]
デジタルツイン技術は、幅広い応用可能性の約束、関連性、可能性を秘めている。
デジタルツインはデータと計算手法を活用することが期待されている。
我々は,デジタルツイン技術における代理モデルの利用の可能性について検討した。
論文 参考訳(メタデータ) (2020-01-25T10:48:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。