論文の概要: Towards Transparency: Exploring LLM Trainings Datasets through Visual Topic Modeling and Semantic Frame
- arxiv url: http://arxiv.org/abs/2406.06574v1
- Date: Mon, 3 Jun 2024 18:44:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 00:04:06.902014
- Title: Towards Transparency: Exploring LLM Trainings Datasets through Visual Topic Modeling and Semantic Frame
- Title(参考訳): 透明性に向けて:ビジュアルトピックモデリングとセマンティックフレームによるLCMトレーニングデータセットの探索
- Authors: Charles de Dampierre, Andrei Mogoutov, Nicolas Baumard,
- Abstract要約: 我々は、AIと認知科学を活用してテキストデータセットの洗練を改善するソフトウェアであるBunkaを紹介する。
トピックモデリングと2次元カルトグラフィーを組み合わせることで、データセットの透明性が向上することを示す。
最後に、フレーム分析を用いることで、トレーニングコーパス内の既存のバイアスに対する洞察が得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLMs are now responsible for making many decisions on behalf of humans: from answering questions to classifying things, they have become an important part of everyday life. While computation and model architecture have been rapidly expanding in recent years, the efforts towards curating training datasets are still in their beginnings. This underappreciation of training datasets has led LLMs to create biased and low-quality content. In order to solve that issue, we present Bunka, a software that leverages AI and Cognitive Science to improve the refinement of textual datasets. We show how Topic Modeling coupled with 2-dimensional Cartography can increase the transparency of datasets. We then show how the same Topic Modeling techniques can be applied to Preferences datasets to accelerate the fine-tuning process and increase the capacities of the model on different benchmarks. Lastly, we show how using Frame Analysis can give insights into existing biases in the training corpus. Overall, we argue that we need better tools to explore and increase the quality and transparency of LLMs training datasets.
- Abstract(参考訳): LLMは現在、質問に答えることから物事の分類に至るまで、日々の生活において重要な役割を担っている。
近年、計算とモデルアーキテクチャは急速に拡大しているが、トレーニングデータセットのキュレーションへの取り組みはまだ始まったばかりである。
このトレーニングデータセットの過小評価により、LLMはバイアスのある低品質のコンテンツを作成できるようになった。
この問題を解決するために、AIと認知科学を活用してテキストデータセットの洗練を改善するソフトウェアであるBunkaを紹介する。
トピックモデリングと2次元カルトグラフィーを組み合わせることで、データセットの透明性が向上することを示す。
次に、同じトピックモデリング手法をPreferencesデータセットに適用して、微調整プロセスを加速し、異なるベンチマーク上でモデルの能力を高める方法を示す。
最後に、フレーム分析を用いることで、トレーニングコーパス内の既存のバイアスに対する洞察が得られることを示す。
全体として、私たちはLLMのトレーニングデータセットの品質と透明性を探求し、向上するためのより良いツールが必要であると論じています。
関連論文リスト
- Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - ALLaVA: Harnessing GPT4V-Synthesized Data for Lite Vision-Language Models [45.040292339670096]
大規模視覚言語モデル(LVLM)は、その強力な推論と一般化能力を備えた幅広い視覚言語タスクの前提を示してきた。
本研究では,従来のLVLMとリソースフレンドリなライトバージョンのパフォーマンスギャップを,高品質なトレーニングデータを用いて橋渡しすることを目的とする。
論文 参考訳(メタデータ) (2024-02-18T19:26:49Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
既存のソリューションは、既存の画像データセット上でトレーニング済みのモデルを微調整することに集中している。
我々は、事前学習された視覚変換器(ViT)における視覚プロンプト(VPT)の学習に基づく、新しい効果的なフレームワークを提案する。
セマンティック情報を用いた新しい近似が代表的能力よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-04T04:42:05Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP)は、大規模なデータセット上でオフラインでトレーニングすることで、さまざまな下流タスクに対して印象的な結果を示している。
VLCP(Vision-Language Continual Pretraining)の研究を支援するために,我々はまず,包括的で統一されたベンチマークデータセットP9Dをコントリビュートする。
独立したタスクとしての各業界からのデータは、継続的な学習をサポートし、Webデータの事前学習をシミュレートする現実世界のロングテールな性質に準拠している。
論文 参考訳(メタデータ) (2023-08-14T13:53:18Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
そこで本研究では,メモリから取得したクロスモーダルな情報を推論時に表現することで,その埋め込みを洗練できる視覚テキストモデルを提案する。
注目すべきことに、これは凍ったCLIPの上に軽量の単層核融合トランスを用いて行うことができる。
検索強化コントラスト訓練(RECO)がCLIPの性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-06-12T15:52:02Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
トレーニングコーパスの高度に代表的なサブセットを選択するために、サブモジュラー最適化を利用する方法を示す。
その結果,完全学習モデルの性能の最大$sim99%が得られた。
論文 参考訳(メタデータ) (2023-05-11T09:24:41Z) - Continual Vision-Language Representation Learning with Off-Diagonal
Information [112.39419069447902]
CLIPのようなマルチモーダルなコントラスト学習フレームワークは通常、トレーニングに大量の画像テキストサンプルを必要とする。
本稿では,ストリーミングデータを用いた連続CLIPトレーニングの実現可能性について論じる。
論文 参考訳(メタデータ) (2023-05-11T08:04:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。