論文の概要: Break the Chain: Large Language Models Can be Shortcut Reasoners
- arxiv url: http://arxiv.org/abs/2406.06580v1
- Date: Tue, 4 Jun 2024 14:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 00:04:06.888543
- Title: Break the Chain: Large Language Models Can be Shortcut Reasoners
- Title(参考訳): チェーンを破る - 大規模言語モデルは推論をショートカットできる
- Authors: Mengru Ding, Hanmeng Liu, Zhizhang Fu, Jian Song, Wenbo Xie, Yue Zhang,
- Abstract要約: CoT(Chain-of-Thought)推論は複雑なモジュールを利用するが、高いトークン消費、適用可能性の制限、思考上の課題によって妨げられる。
本稿では、複雑な論理的および常識的推論タスクを含む算術を超えて、CoTプロンプトの批判的評価を行う。
そこで我々は,「チェーンを破る」戦略を通じて,人型やショートカットを言語モデル(LM)に統合することを提案する。
- 参考スコア(独自算出の注目度): 18.047917626825548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Chain-of-Thought (CoT) reasoning utilize complex modules but are hampered by high token consumption, limited applicability, and challenges in reproducibility. This paper conducts a critical evaluation of CoT prompting, extending beyond arithmetic to include complex logical and commonsense reasoning tasks, areas where standard CoT methods fall short. We propose the integration of human-like heuristics and shortcuts into language models (LMs) through "break the chain" strategies. These strategies disrupt traditional CoT processes using controlled variables to assess their efficacy. Additionally, we develop innovative zero-shot prompting strategies that encourage the use of shortcuts, enabling LMs to quickly exploit reasoning clues and bypass detailed procedural steps. Our comprehensive experiments across various LMs, both commercial and open-source, reveal that LMs maintain effective performance with "break the chain" strategies. We also introduce ShortcutQA, a dataset specifically designed to evaluate reasoning through shortcuts, compiled from competitive tests optimized for heuristic reasoning tasks such as forward/backward reasoning and simplification. Our analysis confirms that ShortcutQA not only poses a robust challenge to LMs but also serves as an essential benchmark for enhancing reasoning efficiency in AI.
- Abstract(参考訳): 近年のChain-of-Thought(CoT)推論の進歩は、複雑なモジュールを利用するが、高いトークン消費、限定的な適用性、再現性の問題によって妨げられている。
本稿では,従来のCoTメソッドが不足する領域である,複雑な論理的および常識的推論タスクを含む算術を超えて,CoTプロンプトの批判的評価を行う。
本稿では,人間のようなヒューリスティックとショートカットを言語モデル (LM) に統合する手法を提案する。
これらの戦略は、制御変数を使用して従来のCoTプロセスを破壊し、その有効性を評価する。
さらに,ショートカットの使用を促進する革新的なゼロショットプロンプト戦略を開発し,推論の手がかりを迅速に活用し,詳細な手続き手順を回避できるようにする。
商用およびオープンソースの両方にわたる様々なLMの総合的な実験により、LMが「チェーンを破る」戦略で効果的な性能を維持していることが明らかとなった。
また、ショートカットによる推論を評価するために特別に設計されたデータセットであるShortcutQAを導入し、前方/後方推論や単純化といったヒューリスティック推論タスクに最適化された競合テストからコンパイルした。
我々の分析では、ShortcutQAはLMに堅牢な課題をもたらすだけでなく、AIの推論効率を高めるための重要なベンチマークとしても機能することを確認した。
関連論文リスト
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
大型言語モデル(LLM)の性能向上のための有望なアプローチとして、Chain-of-Thought(CoT)推論が登場した。
本稿では,これらの課題に対処するための新しい推論境界フレームワーク(RBF)を提案する。
論文 参考訳(メタデータ) (2024-10-08T05:26:28Z) - Instance-adaptive Zero-shot Chain-of-Thought Prompting [32.700073951068575]
Zero-shot Chain-of-Thought (CoT) は,実世界の推論タスクにおける大規模言語モデル(LLM)の性能向上のための,シンプルかつ効果的な戦略として出現する。
この研究は、良いプロンプトと悪いプロンプトを適応的に微分することで、代替のゼロショットCoT推論スキームとして、インスタンス適応プロンプトアルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-09-30T16:00:34Z) - To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-Thought (CoT) は,大規模言語モデル (LLM) から推論能力を引き出すデファクト手法である。
私たちは、CoTが主に数学や論理学を含むタスクに強いパフォーマンス上の利点をもたらし、他のタスクよりもはるかに少ない利益をもたらすことを示しています。
論文 参考訳(メタデータ) (2024-09-18T17:55:00Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
CoT(Chain-of-Thought)パラダイムは,大規模言語モデル(LLM)の推論能力向上のための重要なアプローチとして登場した。
中間的推論ステップを生成する前に戦略的知識を統合することでLCM性能を向上するための textbfStrategic Chain-of-Thought (SCoT) を提案する。
SCoTは1つのプロンプトの中で2段階のアプローチを採用し、まず効果的な問題解決戦略を導き、次に高品質なCoTパスと最終回答の生成を導くのに使用される。
論文 参考訳(メタデータ) (2024-09-05T06:28:05Z) - Combinatorial Reasoning: Selecting Reasons in Generative AI Pipelines via Combinatorial Optimization [2.090904951468026]
大きな言語モデル(LLM)は、人間の知性を必要とするタスクにおいて印象的な能力を示す。
しかし、LLMの推論能力は重要な議論の的となっている。
本稿では,完全自動プロンプト方式である Combinatorial Reasoning (CR) について紹介する。
論文 参考訳(メタデータ) (2024-06-19T16:47:44Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
大規模言語モデル(LLM)は、医療などの重要な領域における現実世界のアプリケーションにますます採用されている。
これらのモデルによって生成されたCoT(Chain-of-Thought)推論が、その基盤となる振る舞いを忠実に捉えることが重要である。
論文 参考訳(メタデータ) (2024-06-15T13:16:44Z) - Chain-of-Thought Reasoning Without Prompting [40.92854235219315]
CoT推論パスは、テキストデコーディングプロセスを変更するだけで、事前訓練された言語モデルから引き出すことができる。
復号経路におけるCoTの存在は、モデルの復号解に対する高い信頼と相関する。
論文 参考訳(メタデータ) (2024-02-15T18:55:41Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
CoT(Chain-of-Thought)の促進により,大規模言語モデル(LLM)の多段階推論能力が劇的に向上する
無効な実演でもCoT推論が可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T05:20:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。