論文の概要: Exploring Multilingual Large Language Models for Enhanced TNM classification of Radiology Report in lung cancer staging
- arxiv url: http://arxiv.org/abs/2406.06591v1
- Date: Wed, 5 Jun 2024 16:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 21:14:20.637596
- Title: Exploring Multilingual Large Language Models for Enhanced TNM classification of Radiology Report in lung cancer staging
- Title(参考訳): 肺癌検診におけるTNM分類の高度化のための多言語大言語モデルの検討
- Authors: Hidetoshi Matsuo, Mizuho Nishio, Takaaki Matsunaga, Koji Fujimoto, Takamichi Murakami,
- Abstract要約: 大型言語モデル(LLM)は、自然言語による放射線学レポートの構造化を自動化することを約束する。
本研究の目的は,GPT3.5-turbo (GPT3.5) を用いた放射線学報告に基づくTNM分類の精度と日本語と英語の多言語LPMの有用性を検討することである。
- 参考スコア(独自算出の注目度): 0.055923945039144905
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: Structured radiology reports remains underdeveloped due to labor-intensive structuring and narrative-style reporting. Deep learning, particularly large language models (LLMs) like GPT-3.5, offers promise in automating the structuring of radiology reports in natural languages. However, although it has been reported that LLMs are less effective in languages other than English, their radiological performance has not been extensively studied. Purpose: This study aimed to investigate the accuracy of TNM classification based on radiology reports using GPT3.5-turbo (GPT3.5) and the utility of multilingual LLMs in both Japanese and English. Material and Methods: Utilizing GPT3.5, we developed a system to automatically generate TNM classifications from chest CT reports for lung cancer and evaluate its performance. We statistically analyzed the impact of providing full or partial TNM definitions in both languages using a Generalized Linear Mixed Model. Results: Highest accuracy was attained with full TNM definitions and radiology reports in English (M = 94%, N = 80%, T = 47%, and ALL = 36%). Providing definitions for each of the T, N, and M factors statistically improved their respective accuracies (T: odds ratio (OR) = 2.35, p < 0.001; N: OR = 1.94, p < 0.01; M: OR = 2.50, p < 0.001). Japanese reports exhibited decreased N and M accuracies (N accuracy: OR = 0.74 and M accuracy: OR = 0.21). Conclusion: This study underscores the potential of multilingual LLMs for automatic TNM classification in radiology reports. Even without additional model training, performance improvements were evident with the provided TNM definitions, indicating LLMs' relevance in radiology contexts.
- Abstract(参考訳): 背景: 労働集約的構造と物語的報告により, 構造的放射線学報告は未発達のままである。
ディープラーニング、特にGPT-3.5のような大規模言語モデル(LLM)は、自然言語による放射線学レポートの構造化を自動化することを約束している。
しかし、LLMは英語以外の言語では効果が低いことが報告されているが、そのラジオロジカルな性能は広く研究されていない。
目的: 本研究は, GPT3.5-turbo (GPT3.5) を用いた放射線学報告に基づくTNM分類の精度と日本語と英語の多言語LLMの有用性について検討することを目的とした。
対象と方法:GPT3.5を用いて肺がんの胸部CT検査からTNM分類を自動的に生成し,その性能を評価するシステムを開発した。
一般化線形混合モデルを用いて,両言語で完全あるいは部分的なTNM定義を提供することによる影響を統計的に分析した。
結果: TNM の完全定義と, 英語での放射線学報告(M = 94%, N = 80%, T = 47%, ALL = 36%)により, 高い精度が得られた。
T, N, M の各因子の定義はそれぞれの精度を統計的に改善した(T: odds ratio (OR) = 2.35, p < 0.001; N: OR = 1.94, p < 0.01; M: OR = 2.50, p < 0.001)。
日本人の報告では、NとMの精度が低下した(Nの精度:OR = 0.74、Mの精度:OR = 0.21)。
結論:本研究は,TNM自動分類における多言語LPMの有用性をラジオグラフィーレポートで示している。
追加のモデルトレーニングがなくても、提供されたTNM定義により性能が向上し、放射線学の文脈におけるLLMの関連性が示唆された。
関連論文リスト
- Classification of Radiological Text in Small and Imbalanced Datasets in a Non-English Language [8.93554009307115]
自然言語処理は、非英語の小さなデータセットを含む現実世界のアプリケーションでは性能が劣る可能性がある。
BERT-like transformer, few-shot learning with sentence transformer (SetFit) などのNLPモデルのセットを評価し,大規模言語モデル (LLM) を誘導した。
以上の結果から,放射線学報告の対象領域で事前訓練されたBERT様モデルでは,このシナリオに最適な性能が得られることが示唆された。
論文 参考訳(メタデータ) (2024-09-30T09:52:28Z) - Towards a Holistic Framework for Multimodal Large Language Models in Three-dimensional Brain CT Report Generation [42.06416052431378]
2Dラジオグラフィーキャプションは、ボリューム3D解剖学における現実の診断課題を反映するものではない。
我々は18,885組の3D-BrainCTデータセットを収集し,臨床ビジュアルインストラクション・チューニングを用いて,脳波モデルを用いて放射線治療を施した3D脳CTレポートを作成した。
私たちの研究は、3Dの脳CTデータセットのキュレーション、微調整による解剖学的意味のある言語モデル、堅牢な放射線学評価指標の提案など、総合的な枠組みを具現化したものです。
論文 参考訳(メタデータ) (2024-07-02T12:58:35Z) - RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
本稿では,Radiological Report (Text) Evaluation (RaTEScore) として,新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
論文 参考訳(メタデータ) (2024-06-24T17:49:28Z) - The current status of large language models in summarizing radiology report impressions [13.402769727597812]
大きな言語モデル(LLMs)が放射線学レポートの印象を要約する効果は、まだ不明である。
北京大学医学部附属病院からCT,PET-CT,超音波の3種類の放射線学報告を収集した。
本報告では,ゼロショット,ワンショット,3ショットのプロンプトを完全な実例で構築し,インプレッションを生成する。
論文 参考訳(メタデータ) (2024-06-04T09:23:30Z) - Leveraging Prompt-Learning for Structured Information Extraction from Crohn's Disease Radiology Reports in a Low-Resource Language [11.688665498310405]
SMP-BERTは、自由テキストラジオグラフィーレポートを自動的に構造化データに変換する新しいプロンプト学習法である。
そこで本研究では,SMP-BERTが従来の微調整法をはるかに上回った。
論文 参考訳(メタデータ) (2024-05-02T19:11:54Z) - Reshaping Free-Text Radiology Notes Into Structured Reports With Generative Transformers [0.29530625605275984]
構造化報告(SR)は様々な医療社会で推奨されている。
自由テキストレポートから情報を抽出するパイプラインを提案する。
我々の研究は自然言語処理(NLP)とトランスフォーマーベースのモデルを活用することを目的としている。
論文 参考訳(メタデータ) (2024-03-27T18:38:39Z) - Exploring the Boundaries of GPT-4 in Radiology [46.30976153809968]
GPT-4は、複雑なコンテキストにおいて、時折エラーしか発生しない十分なレベルの放射線学知識を持っている。
結果の要約では、GPT-4の出力は、既存の手書きのインプレッションと総合的に比較できる。
論文 参考訳(メタデータ) (2023-10-23T05:13:03Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
本稿では,ラジオロジーに特化した大規模言語モデルであるRadiology-Llama2を紹介する。
MIMIC-CXRとOpenIデータセットのROUGEメトリクスを用いた定量的評価は、Radiology-Llama2が最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-08-29T17:44:28Z) - Evaluating Large Language Models for Radiology Natural Language
Processing [68.98847776913381]
大規模言語モデル(LLM)の台頭は、自然言語処理(NLP)分野における重要な転換点となっている。
本研究は, 放射線学報告の解釈において, 30 個の LLM を批判的に評価することにより, このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-07-25T17:57:18Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。