論文の概要: Distributed neural network control with dependability guarantees: a
compositional port-Hamiltonian approach
- arxiv url: http://arxiv.org/abs/2112.09046v1
- Date: Thu, 16 Dec 2021 17:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 16:54:26.666164
- Title: Distributed neural network control with dependability guarantees: a
compositional port-Hamiltonian approach
- Title(参考訳): 信頼度保証による分散ニューラルネットワーク制御:合成ポートハミルトニアンアプローチ
- Authors: Luca Furieri, Clara Luc\'ia Galimberti, Muhammad Zakwan, Giancarlo
Ferrari-Trecate
- Abstract要約: 大規模なサイバー物理システムは、制御ポリシーが分散されていること、すなわち、ローカルなリアルタイム測定と近隣エージェントとの通信にのみ依存することを要求する。
最近の研究でニューラルネットワーク(NN)分散コントローラのトレーニングが提案されている。
NNコントローラの主な課題は、トレーニング中と後、すなわちクローズドループシステムは不安定であり、勾配の消失と爆発によってトレーニングが失敗する可能性があることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale cyber-physical systems require that control policies are
distributed, that is, that they only rely on local real-time measurements and
communication with neighboring agents. Optimal Distributed Control (ODC)
problems are, however, highly intractable even in seemingly simple cases.
Recent work has thus proposed training Neural Network (NN) distributed
controllers. A main challenge of NN controllers is that they are not dependable
during and after training, that is, the closed-loop system may be unstable, and
the training may fail due to vanishing and exploding gradients. In this paper,
we address these issues for networks of nonlinear port-Hamiltonian (pH)
systems, whose modeling power ranges from energy systems to non-holonomic
vehicles and chemical reactions. Specifically, we embrace the compositional
properties of pH systems to characterize deep Hamiltonian control policies with
built-in closed-loop stability guarantees, irrespective of the interconnection
topology and the chosen NN parameters. Furthermore, our setup enables
leveraging recent results on well-behaved neural ODEs to prevent the phenomenon
of vanishing gradients by design. Numerical experiments corroborate the
dependability of the proposed architecture, while matching the performance of
general neural network policies.
- Abstract(参考訳): 大規模なサイバー物理システムは、制御ポリシーが分散されていること、すなわち、ローカルなリアルタイム測定と近隣エージェントとの通信にのみ依存することを要求する。
しかし、最適分散制御(ODC)問題は、一見単純な場合であっても非常に難解である。
これにより、ニューラルネットワーク(NN)分散コントローラのトレーニングが提案されている。
NNコントローラの主な課題は、トレーニング中と後、すなわちクローズドループシステムは不安定であり、勾配の消失と爆発によってトレーニングが失敗する可能性があることである。
本稿では, エネルギーシステムから非ホロノミック車両, 化学反応まで, モデル化能力を持つ非線形ポート・ハミルトン系(pH)のネットワークについて論じる。
具体的には、相互接続トポロジーと選択したnnパラメータに関係なく、深いハミルトニアン制御ポリシを内蔵した閉ループ安定性保証で特徴付けるため、phシステムの構成特性を取り入れた。
さらに、我々は、ニューラルネットワークの最近の結果を活用して、設計による勾配の消失現象を防止する。
数値実験は、一般的なニューラルネットワークポリシーのパフォーマンスにマッチしながら、提案されたアーキテクチャの依存性を補う。
関連論文リスト
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
ニューラルネットワーク(NN)は、優れたパフォーマンスをもたらす制御ポリシのパラメータ化に利用することができる。
NNの小さな入力変更に対する感度は、クローズドループシステムの不安定化のリスクを引き起こす。
これらの問題に対処するために、ポート・ハミルトンシステムのフレームワークを活用して、連続時間分散制御ポリシーを設計する。
提案する分散コントローラの有効性は,非ホロノミック移動ロボットのコンセンサス制御によって実証される。
論文 参考訳(メタデータ) (2024-11-15T10:44:29Z) - Building Hybrid B-Spline And Neural Network Operators [0.0]
制御システムはサイバー物理システム(CPS)の安全性を確保するために不可欠である
本稿では,B-スプラインの帰納バイアスとデータ駆動型ニューラルネットワークを組み合わせることで,CPS行動のリアルタイム予測を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T21:54:59Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
繰り返し接続のパラメータ化が閉ループ設定のロバスト性にどのように影響するかを示す。
パラメータが少ないクローズドフォーム連続時間ニューラルネットワーク(CfCs)は、フルランクで完全に接続されたニューラルネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-10-05T21:44:18Z) - Safety Filter Design for Neural Network Systems via Convex Optimization [35.87465363928146]
ニューラルネットワーク(NN)システムの安全性を確保するために,凸最適化に依存する新しい安全フィルタを提案する。
非線形振り子システムにおいて,提案手法の有効性を数値的に示す。
論文 参考訳(メタデータ) (2023-08-16T01:30:13Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Closed-form control with spike coding networks [1.1470070927586016]
スパイキングニューラルネットワーク(SNN)を用いた効率的かつ堅牢な制御は、依然として未解決の問題である。
スパイク符号化ネットワーク(SCN)の神経科学理論を,クローズドフォームの最適推定と制御を取り入れて拡張する。
模擬スプリング・マス・ダンパーおよびカート・ポールシステムのロバストなスパイク制御を実証した。
論文 参考訳(メタデータ) (2022-12-25T10:32:20Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Neural network optimal feedback control with enhanced closed loop
stability [3.0981875303080795]
近年の研究では、教師あり学習は高次元非線形力学系のための最適フィードバックコントローラを設計するための有効なツールであることが示されている。
しかし、これらのニューラルネットワーク(NN)コントローラの挙動はまだよく理解されていない。
本稿では,NNコントローラがシステムの安定化に有効であることを示すために,数値シミュレーションを用いた。
論文 参考訳(メタデータ) (2021-09-15T17:59:20Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
分散コントローラを学習するグラフニューラルネットワーク(GNN)を用いた新しいフレームワークを提案する。
GNNは、自然分散アーキテクチャであり、優れたスケーラビリティと転送性を示すため、タスクに適している。
分散コントローラの学習におけるGNNの可能性を説明するために、群れとマルチエージェントパス計画の問題を検討する。
論文 参考訳(メタデータ) (2020-12-29T18:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。