論文の概要: Adversarial Tuning: Defending Against Jailbreak Attacks for LLMs
- arxiv url: http://arxiv.org/abs/2406.06622v1
- Date: Fri, 7 Jun 2024 15:37:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 20:54:41.213316
- Title: Adversarial Tuning: Defending Against Jailbreak Attacks for LLMs
- Title(参考訳): 敵対的なチューニング: LLMの脱獄攻撃を防御する
- Authors: Fan Liu, Zhao Xu, Hao Liu,
- Abstract要約: 本稿では,大規模言語モデルの汎用防衛能力を高めるための2段階の逆調整フレームワークを提案する。
第1段階では,トークンレベルの逆数生成を効率的に行うために,階層型メタユニバーサル逆数学習を導入する。
第2段階では,自動対向プロンプト学習により,意味レベルの対向プロンプトを反復的に洗練する手法を提案する。
- 参考スコア(独自算出の注目度): 13.317364896194903
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although safely enhanced Large Language Models (LLMs) have achieved remarkable success in tackling various complex tasks in a zero-shot manner, they remain susceptible to jailbreak attacks, particularly the unknown jailbreak attack. To enhance LLMs' generalized defense capabilities, we propose a two-stage adversarial tuning framework, which generates adversarial prompts to explore worst-case scenarios by optimizing datasets containing pairs of adversarial prompts and their safe responses. In the first stage, we introduce the hierarchical meta-universal adversarial prompt learning to efficiently and effectively generate token-level adversarial prompts. In the second stage, we propose the automatic adversarial prompt learning to iteratively refine semantic-level adversarial prompts, further enhancing LLM's defense capabilities. We conducted comprehensive experiments on three widely used jailbreak datasets, comparing our framework with six defense baselines under five representative attack scenarios. The results underscore the superiority of our proposed methods. Furthermore, our adversarial tuning framework exhibits empirical generalizability across various attack strategies and target LLMs, highlighting its potential as a transferable defense mechanism.
- Abstract(参考訳): 安全に拡張されたLarge Language Models (LLM) は、ゼロショットで様々な複雑なタスクに対処することに成功したが、Jailbreak攻撃、特に未知のJailbreak攻撃の影響を受けないままである。
LLMの汎用防衛能力を高めるために,対の対数プロンプトと安全な応答を含むデータセットを最適化することにより,最悪のシナリオを探索する2段階の対数チューニングフレームワークを提案する。
第1段階では,階層型メタユニバーサル逆数学習を導入し,トークンレベルの逆数処理を効率的に効果的に生成する。
第2段階では,LLMの防御能力を向上し,意味レベルを反復的に洗練する自動対位プロンプト学習を提案する。
我々は,広く使用されている3つのjailbreakデータセットの総合的な実験を行い,このフレームワークを5つの代表的な攻撃シナリオ下で6つの防御ベースラインと比較した。
この結果は,提案手法の優位性を裏付けるものである。
さらに,我々の対戦型チューニングフレームワークは,様々な攻撃戦略と目標LSMをまたいだ経験的一般化性を示し,移動可能な防御機構としての可能性を強調した。
関連論文リスト
- Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
大規模言語モデル(LLM)は、様々なテキスト生成タスクにおいて例外的に機能している。
ジェイルブレイク」は、利用方針や社会に対する悪意ある反応をモデルに誘導する。
本稿では,ジェイルブレイク攻撃と防衛方法の包括的かつ詳細な分類法を提案する。
論文 参考訳(メタデータ) (2024-07-05T06:57:30Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Large Language Model Sentinel: LLM Agent for Adversarial Purification [27.461127931996323]
大規模言語モデル(LLM)は、よく設計されたテキストの摂動による敵攻撃に対して脆弱である。
LLAMOS(Large LAnguage Model Sentinel)と呼ばれる新しい防御技術を導入し,LLMの対角的堅牢性を高める。
論文 参考訳(メタデータ) (2024-05-24T07:23:56Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Robust Prompt Optimization for Defending Language Models Against Jailbreaking Attacks [17.22989422489567]
大規模言語モデル(LLM)は敵の攻撃や脱獄に対して脆弱である。
本稿では,LLMをジェイルブレイク攻撃から守るための最適化に基づく目標と,堅牢なシステムレベルの防御を実現するアルゴリズムを提案する。
GPT-4の攻撃成功率(ASR)は6%,Llama-2の攻撃成功率(ASR)は0%に低下した。
論文 参考訳(メタデータ) (2024-01-30T18:56:08Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
LLM(Large Language Models)の安全性の整合性は、手動のジェイルブレイク攻撃や(自動)敵攻撃によって損なわれる可能性がある。
最近の研究は、これらの攻撃に対する防御が可能であることを示唆している。敵攻撃は無限だが読めないジベリッシュプロンプトを生成し、難易度に基づくフィルタによって検出できる。
両攻撃の強度をマージする,解釈可能な勾配に基づく対向攻撃であるAutoDANを導入する。
論文 参考訳(メタデータ) (2023-10-23T17:46:07Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。