Benchmarking Neural Decoding Backbones towards Enhanced On-edge iBCI Applications
- URL: http://arxiv.org/abs/2406.06626v1
- Date: Sat, 8 Jun 2024 02:45:36 GMT
- Title: Benchmarking Neural Decoding Backbones towards Enhanced On-edge iBCI Applications
- Authors: Zhou Zhou, Guohang He, Zheng Zhang, Luziwei Leng, Qinghai Guo, Jianxing Liao, Xuan Song, Ran Cheng,
- Abstract summary: This study seeks to identify an optimal neural decoding backbone that boasts robust performance and swift inference capabilities suitable for edge deployment.
We evaluated four prospective models, Gated Recurrent Unit (GRU), Transformer, Receptance Weighted Key Value (RWKV), and Selective State Space model (Mamba)
The findings indicate that although the GRU model delivers sufficient accuracy, the RWKV and Mamba models are preferable due to their superior inference and calibration speeds.
- Score: 28.482461973598593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional invasive Brain-Computer Interfaces (iBCIs) typically depend on neural decoding processes conducted on workstations within laboratory settings, which prevents their everyday usage. Implementing these decoding processes on edge devices, such as the wearables, introduces considerable challenges related to computational demands, processing speed, and maintaining accuracy. This study seeks to identify an optimal neural decoding backbone that boasts robust performance and swift inference capabilities suitable for edge deployment. We executed a series of neural decoding experiments involving nonhuman primates engaged in random reaching tasks, evaluating four prospective models, Gated Recurrent Unit (GRU), Transformer, Receptance Weighted Key Value (RWKV), and Selective State Space model (Mamba), across several metrics: single-session decoding, multi-session decoding, new session fine-tuning, inference speed, calibration speed, and scalability. The findings indicate that although the GRU model delivers sufficient accuracy, the RWKV and Mamba models are preferable due to their superior inference and calibration speeds. Additionally, RWKV and Mamba comply with the scaling law, demonstrating improved performance with larger data sets and increased model sizes, whereas GRU shows less pronounced scalability, and the Transformer model requires computational resources that scale prohibitively. This paper presents a thorough comparative analysis of the four models in various scenarios. The results are pivotal in pinpointing an optimal backbone that can handle increasing data volumes and is viable for edge implementation. This analysis provides essential insights for ongoing research and practical applications in the field.
Related papers
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Scalable Bayesian Tensor Ring Factorization for Multiway Data Analysis [24.04852523970509]
We propose a novel BTR model that incorporates a nonparametric Multiplicative Gamma Process (MGP) prior.
To handle discrete data, we introduce the P'olya-Gamma augmentation for closed-form updates.
We develop an efficient Gibbs sampler for consistent posterior simulation, which reduces the computational complexity of previous VI algorithm by two orders.
arXiv Detail & Related papers (2024-12-04T13:55:14Z) - BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - Scaling Laws for Task-Optimized Models of the Primate Visual Ventral Stream [3.4526439922541705]
We evaluate scaling laws for modeling the primate visual ventral stream (VVS)
We observe that while behavioral alignment continues to scale with larger models, neural alignment saturates.
Increased scaling is especially beneficial for higher-level visual areas, where small models trained on few samples exhibit only poor alignment.
arXiv Detail & Related papers (2024-11-08T17:13:53Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks.
We incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data.
We also propose a data augmentation based information bottleneck objective which can enhance the quality of the extrapolation uncertainty.
arXiv Detail & Related papers (2023-02-07T05:56:42Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - T4PdM: a Deep Neural Network based on the Transformer Architecture for
Fault Diagnosis of Rotating Machinery [0.0]
This paper develops an automatic fault classifier model for predictive maintenance based on a modified version of the Transformer architecture, namely T4PdM.
T4PdM was able to achieve an overall accuracy of 99.98% and 98% for both datasets.
It has demonstrated the superiority of the model in detecting and classifying faults in rotating industrial machinery.
arXiv Detail & Related papers (2022-04-07T20:31:45Z) - Designing Accurate Emulators for Scientific Processes using
Calibration-Driven Deep Models [33.935755695805724]
Learn-by-Calibrating (LbC) is a novel deep learning approach for designing emulators in scientific applications.
We show that LbC provides significant improvements in generalization error over widely-adopted loss function choices.
LbC achieves high-quality emulators even in small data regimes and more importantly, recovers the inherent noise structure without any explicit priors.
arXiv Detail & Related papers (2020-05-05T16:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.