Generalizable, real-time neural decoding with hybrid state-space models
- URL: http://arxiv.org/abs/2506.05320v1
- Date: Thu, 05 Jun 2025 17:57:08 GMT
- Title: Generalizable, real-time neural decoding with hybrid state-space models
- Authors: Avery Hee-Woon Ryoo, Nanda H. Krishna, Ximeng Mao, Mehdi Azabou, Eva L. Dyer, Matthew G. Perich, Guillaume Lajoie,
- Abstract summary: We present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone.<n>We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications.<n>In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost.
- Score: 12.37704585793711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-computer interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.
Related papers
- Finger Force Decoding from Motor Units Activity on Neuromorphic Hardware [1.8754256211583082]
We propose a novel approach to perform finger force regression using spike trains from individual motor neurons.<n>These biologically grounded signals drive a spiking neural network implemented on a mixed-signal neuromorphic processor.<n>This is the first demonstration of motor neuron-based continuous regression computed directly on neuromorphic hardware.
arXiv Detail & Related papers (2025-07-31T11:55:02Z) - Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Neuromorphic Wireless Split Computing with Resonate-and-Fire Neurons [69.73249913506042]
This paper investigates a wireless split computing architecture that employs resonate-and-fire (RF) neurons to process time-domain signals directly.<n>By resonating at tunable frequencies, RF neurons extract time-localized spectral features while maintaining low spiking activity.<n> Experimental results show that the proposed RF-SNN architecture achieves comparable accuracy to conventional LIF-SNNs and ANNs.
arXiv Detail & Related papers (2025-06-24T21:14:59Z) - Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
arXiv Detail & Related papers (2024-09-06T17:48:44Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Neuromorphic Computing with AER using Time-to-Event-Margin Propagation [7.730429080477441]
We show how causal temporal primitives like delay, triggering, and sorting inherent in the AER protocol can be exploited for scalable neuromorphic computing.
The proposed TEMP-based AER architecture is fully asynchronous and relies on interconnect delays for memory and computing.
As a proof-of-concept, we show that a trained TEMP-based convolutional neural network (CNN) can demonstrate an accuracy greater than 99% on the MNIST dataset.
arXiv Detail & Related papers (2023-04-27T02:01:54Z) - A Comparison of Temporal Encoders for Neuromorphic Keyword Spotting with
Few Neurons [0.11726720776908518]
Two candidate neurocomputational elements for temporal encoding and feature extraction in SNNs are investigated.
Resource-efficient keyword spotting applications may benefit from the use of these encoders, but further work on methods for learning the time constants and weights is required.
arXiv Detail & Related papers (2023-01-24T12:50:54Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.