論文の概要: Training and Validating a Treatment Recommender with Partial Verification Evidence
- arxiv url: http://arxiv.org/abs/2406.06654v1
- Date: Mon, 10 Jun 2024 09:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 20:44:57.181163
- Title: Training and Validating a Treatment Recommender with Partial Verification Evidence
- Title(参考訳): 部分的検証エビデンスによる治療レコメンダの訓練と検証
- Authors: Vishnu Unnikrishnan, Clara Puga, Miro Schleicher, Uli Niemann, Berthod Langguth, Stefan Schoisswohl, Birgit Mazurek, Rilana Cima, Jose Antonio Lopez-Escamez, Dimitris Kikidis, Eleftheria Vellidou, Ruediger Pryss, Winfried Schlee, Myra Spiliopoulou,
- Abstract要約: 現在の臨床意思決定支援システム(DSS)は,対象クリニックの観察データに基づいて訓練され,検証されている。
ランダム化臨床試験(RCT)で検証されるが、どの診療所にも導入されていない。
主な課題は、治療の割り当てに対する根拠の欠如(割り当てはランダムである)、証拠の欠如である。
- 参考スコア(独自算出の注目度): 1.0693162404690828
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current clinical decision support systems (DSS) are trained and validated on observational data from the target clinic. This is problematic for treatments validated in a randomized clinical trial (RCT), but not yet introduced in any clinic. In this work, we report on a method for training and validating the DSS using the RCT data. The key challenges we address are of missingness -- missing rationale for treatment assignment (the assignment is at random), and missing verification evidence, since the effectiveness of a treatment for a patient can only be verified (ground truth) for treatments what were actually assigned to a patient. We use data from a multi-armed RCT that investigated the effectiveness of single- and combination- treatments for 240+ tinnitus patients recruited and treated in 5 clinical centers. To deal with the 'missing rationale' challenge, we re-model the target variable (outcome) in order to suppress the effect of the randomly-assigned treatment, and control on the effect of treatment in general. Our methods are also robust to missing values in features and with a small number of patients per RCT arm. We deal with 'missing verification evidence' by using counterfactual treatment verification, which compares the effectiveness of the DSS recommendations to the effectiveness of the RCT assignments when they are aligned v/s not aligned. We demonstrate that our approach leverages the RCT data for learning and verification, by showing that the DSS suggests treatments that improve the outcome. The results are limited through the small number of patients per treatment; while our ensemble is designed to mitigate this effect, the predictive performance of the methods is affected by the smallness of the data. We provide a basis for the establishment of decision supporting routines on treatments that have been tested in RCTs but have not yet been deployed clinically.
- Abstract(参考訳): 現在の臨床意思決定支援システム(DSS)は,対象クリニックの観察データに基づいて訓練され,検証されている。
これは、ランダム化臨床試験(RCT)で検証された治療には問題があるが、どのクリニックにもまだ導入されていない。
本稿では,RDTデータを用いたDSSの訓練・検証手法について報告する。
患者に対する治療の効果は、実際に患者に割り当てられたものに対してのみ検証できる(地上の真実)ためである。
当科では, 240例以上のチニタス患者に対して, 単剤と組み合わせ療法の有効性について検討した。
本研究では, ランダムに指定した治療の効果を抑えるため, 対象変数(アウトカム)をモデル化し, 一般に治療の効果を制御する。
また,本手法は特徴値の欠落に対して頑健であり,RCTアーム1本あたりの患者数は少ない。
我々は,DSS勧告の有効性と,一致しない v/s が一致していない場合の RCT 課題の有効性を比較検討した。
我々は,本手法が学習と検証にRTTデータを活用することを実証し,DSSが結果を改善する治療を提案することを示した。
この効果を緩和するためのアンサンブルが設計されているのに対し、本手法の予測性能は、データの小型化によって影響を受ける。
RCTで検査されたが,まだ臨床に導入されていない治療に対する意思決定支援ルーチンの確立の基盤を提供する。
関連論文リスト
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
医療の安全性と有効性を理解するためには,観測データから因果量の推定が重要である。
医療従事者は、平均因果量の推定だけでなく、治療効果のランダム性をランダムな変数として理解する必要がある。
このランダム性はアレタリック不確実性と呼ばれ、治療効果の利益や量子化の確率を理解するために必要である。
論文 参考訳(メタデータ) (2024-11-05T18:14:49Z) - Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing [43.259723628010896]
個人を個別に標本化し,反現実的結果を推測する直接的アプローチを提唱する。
提案手法を5つのベンチマークで評価し,提案手法が6つの最先端手法よりも精度が高いことを示す。
論文 参考訳(メタデータ) (2024-01-27T15:52:58Z) - The R.O.A.D. to precision medicine [5.877778007271621]
本稿ではランダム化試行データサブグループ解析の欠陥に対処する確率的層間マッチングフレームワークを提案する。
我々は,消化管間質性腫瘍(GIST)の観察データに枠組みを適用し,外部コホートでOPTを検証した。
論文 参考訳(メタデータ) (2023-11-03T03:08:15Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - SECRETS: Subject-Efficient Clinical Randomized Controlled Trials using
Synthetic Intervention [0.0]
クロスオーバー試験は、個人ごとの処理効果を測定することで、サンプルサイズの要求を減らすことができる。
外部データを用いることなく, 患者ごとの個別治療効果(ITE)を推定する新しいフレームワークであるSECRETSを提案する。
この結果から,SECRETSはRCTのパワーを向上しつつ,同等の意義レベルを維持することができることがわかった。
論文 参考訳(メタデータ) (2023-05-08T22:37:16Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
患者予後に対する介入の効果を推定することは、パーソナライズされた医療の重要な側面の1つである。
時間から時間までのデータは、治療最適化にはほとんど使われない。
我々は、治療特異的な半パラメトリックコックス損失と治療バランスの深いディープニューラルネットワークを組み合わせたBITESというアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-05T10:39:31Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
因果効果変動オートエンコーダ(CEVAE)をトレーニングし、観察処理データから結果を予測する。
均一処理変分オートエンコーダ (UTVAE) は, 重要サンプリングを用いて均一な処理分布を訓練する。
論文 参考訳(メタデータ) (2021-11-16T17:40:57Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
動的治療体制 (DTR) はパーソナライズされ適応された多段階の治療計画であり、治療決定を個人の初期特徴に適応させ、その後の各段階における中間結果と特徴に適応させる。
本稿では,探索と搾取を慎重にバランスさせることで,遷移モデルと報酬モデルが線形である場合に,速度-最適後悔を実現する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-06T13:03:42Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。