Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing
- URL: http://arxiv.org/abs/2401.15447v1
- Date: Sat, 27 Jan 2024 15:52:58 GMT
- Title: Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing
- Authors: Lokesh Nagalapatti, Akshay Iyer, Abir De, Sunita Sarawagi
- Abstract summary: We advocate the direct approach of augmenting training individuals with independently sampled treatments and inferred counterfactual outcomes.
We evaluate our method on five benchmarks and show that our method outperforms six state-of-the-art methods on the counterfactual estimation error.
- Score: 43.259723628010896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the Individualized continuous treatment effect (ICTE) estimation
problem where we predict the effect of any continuous-valued treatment on an
individual using observational data. The main challenge in this estimation task
is the potential confounding of treatment assignment with an individual's
covariates in the training data, whereas during inference ICTE requires
prediction on independently sampled treatments. In contrast to prior work that
relied on regularizers or unstable GAN training, we advocate the direct
approach of augmenting training individuals with independently sampled
treatments and inferred counterfactual outcomes. We infer counterfactual
outcomes using a two-pronged strategy: a Gradient Interpolation for
close-to-observed treatments, and a Gaussian Process based Kernel Smoothing
which allows us to downweigh high variance inferences. We evaluate our method
on five benchmarks and show that our method outperforms six state-of-the-art
methods on the counterfactual estimation error. We analyze the superior
performance of our method by showing that (1) our inferred counterfactual
responses are more accurate, and (2) adding them to the training data reduces
the distributional distance between the confounded training distribution and
test distribution where treatment is independent of covariates. Our proposed
method is model-agnostic and we show that it improves ICTE accuracy of several
existing models.
Related papers
- Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning [0.0]
We propose a difference-in-differences (DiD) method for continuous treatment and multiple time periods.
Our framework assesses the average treatment effect on the treated (ATET) when comparing two non-zero treatment doses.
arXiv Detail & Related papers (2024-10-28T15:10:43Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
We suggest a machine learning estimator of direct and indirect quantile treatment effects under a selection-on-observables assumption.
The proposed method is based on the efficient score functions of the cumulative distribution functions of potential outcomes.
We also propose a multiplier bootstrap for statistical inference and show the validity of the multiplier.
arXiv Detail & Related papers (2023-07-03T14:27:15Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
Causal effect variational autoencoder (CEVAE) are trained to predict the outcome given observational treatment data.
Uniform treatment variational autoencoders (UTVAE) are trained with uniform treatment distribution using importance sampling.
arXiv Detail & Related papers (2021-11-16T17:40:57Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
We develop a distribution learning-based weighting method for treatment effect estimation.
Our method outperforms several cutting-edge weighting-only benchmarking methods.
It maintains its advantage under a doubly-robust estimation framework.
arXiv Detail & Related papers (2020-12-26T20:15:44Z) - Evaluating (weighted) dynamic treatment effects by double machine
learning [0.12891210250935145]
We consider evaluating the causal effects of dynamic treatments in a data-driven way under a selection-on-observables assumption.
We make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications.
We demonstrate that the estimators are regularityally normal and $sqrtn$-consistent under specific conditions.
arXiv Detail & Related papers (2020-12-01T09:55:40Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.