論文の概要: Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints
- arxiv url: http://arxiv.org/abs/2406.06755v1
- Date: Mon, 10 Jun 2024 19:34:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 20:15:44.160150
- Title: Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints
- Title(参考訳): 不均一分散微分プライバシー制約を用いた非パラメトリック回帰のための最適フェデレーション学習
- Authors: T. Tony Cai, Abhinav Chakraborty, Lasse Vuursteen,
- Abstract要約: 本研究では,異なるサーバにまたがる分散サンプルのコンテキストにおける非パラメトリック回帰のためのフェデレーション学習について検討した。
統計の正確さとプライバシーの保護のトレードオフに光を当てている。
- 参考スコア(独自算出の注目度): 5.3595271893779906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies federated learning for nonparametric regression in the context of distributed samples across different servers, each adhering to distinct differential privacy constraints. The setting we consider is heterogeneous, encompassing both varying sample sizes and differential privacy constraints across servers. Within this framework, both global and pointwise estimation are considered, and optimal rates of convergence over the Besov spaces are established. Distributed privacy-preserving estimators are proposed and their risk properties are investigated. Matching minimax lower bounds, up to a logarithmic factor, are established for both global and pointwise estimation. Together, these findings shed light on the tradeoff between statistical accuracy and privacy preservation. In particular, we characterize the compromise not only in terms of the privacy budget but also concerning the loss incurred by distributing data within the privacy framework as a whole. This insight captures the folklore wisdom that it is easier to retain privacy in larger samples, and explores the differences between pointwise and global estimation under distributed privacy constraints.
- Abstract(参考訳): 本稿では,異なるサーバ間の分散サンプルのコンテキストにおける非パラメトリック回帰のためのフェデレーション学習について検討する。
私たちが考える設定は異種であり、異なるサンプルサイズとサーバ間の差分プライバシーの制約の両方を包含する。
この枠組み内では、大域的および点的推定の両方が考慮され、ベソフ空間上の収束の最適速度が確立される。
分散プライバシ保存推定器を提案し,そのリスク特性について検討した。
対数係数までの最小値下限のマッチングは、大域的および点的推定の両方のために確立される。
これらの発見は、統計精度とプライバシー保護のトレードオフを浮き彫りにした。
特に、プライバシ予算だけでなく、プライバシフレームワーク全体にデータを分散することで生じる損失についても、妥協を特徴付ける。
この洞察は、より大規模なサンプルでのプライバシー保持が容易であるという民間の知恵を捉え、分散プライバシ制約の下でのポイントワイドとグローバルな推定の違いを探求する。
関連論文リスト
- Minimax And Adaptive Transfer Learning for Nonparametric Classification under Distributed Differential Privacy Constraints [6.042269506496206]
まず、プライバシ制約、ソースサンプル、ターゲットサンプルが分類精度に与える影響を正確に評価し、ミニマックスの誤分類率を確立する。
その結果、興味深い位相遷移現象が明らかとなり、プライバシーの保護と分類精度の達成との複雑なトレードオフが浮き彫りになった。
論文 参考訳(メタデータ) (2024-06-28T17:55:41Z) - Differentially Private Federated Learning: Servers Trustworthiness, Estimation, and Statistical Inference [18.97060758177909]
本稿では,差分プライバシーの制約下での高次元推定と推測の課題について検討する。
線形回帰モデルに適した新しいフェデレーション推定アルゴリズムを提案する。
また,各パラメータの座標的信頼区間を含む統計的推測手法を提案する。
論文 参考訳(メタデータ) (2024-04-25T02:14:07Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Optimal Private Discrete Distribution Estimation with One-bit Communication [63.413106413939836]
1ビット通信制約を伴う個別分布推定問題を考える。
1ビット通信制約下での最悪のトレードオフの1次を特徴付ける。
これらの結果は,1ビット通信制約下でのプライバシユーティリティトレードオフの最適依存性を示す。
論文 参考訳(メタデータ) (2023-10-17T05:21:19Z) - Personalized Graph Federated Learning with Differential Privacy [6.282767337715445]
本稿では、分散接続されたサーバとそのエッジデバイスが協調してデバイスやクラスタ固有のモデルを学習する、パーソナライズされたグラフフェデレーション学習(PGFL)フレームワークを提案する。
本稿では、差分プライバシー、特にノイズシーケンスがモデル交換を行うゼロ集中差分プライバシーを利用するPGFL実装の変種について検討する。
分析の結果,このアルゴリズムは,ゼロ集中型差分プライバシーの観点から,全クライアントの局所的な差分プライバシを保証することがわかった。
論文 参考訳(メタデータ) (2023-06-10T09:52:01Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
FedLAP-DPは、フェデレーション学習のための新しいプライバシー保護アプローチである。
公式なプライバシー分析は、FedLAP-DPが典型的な勾配共有方式と同じプライバシーコストを発生させることを示している。
提案手法は, 通常の勾配共有法に比べて高速な収束速度を示す。
論文 参考訳(メタデータ) (2023-02-02T12:56:46Z) - On the Statistical Complexity of Estimation and Testing under Privacy
Constraints [0.0]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
我々は、公開ラベル付きデータを持つソースドメインから、未ラベル付きプライベートデータを持つターゲットドメインへの適応のための差分プライベート離散性に基づくアルゴリズムを設計する。
我々の解は、Frank-WolfeとMirror-Descentアルゴリズムのプライベートな変種に基づいている。
論文 参考訳(メタデータ) (2022-08-12T06:52:55Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
本稿では,中央値に対する有意な個人的信頼区間を計算するためのいくつかの戦略を提案し,評価する。
また、サンプリングからのエラーと出力の保護からのエラーという2つの不確実性源に対処することが、この不確実性を逐次的に組み込んだ単純なアプローチよりも望ましいことを示す。
論文 参考訳(メタデータ) (2021-06-18T19:45:37Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。