Personalized Binomial DAGs Learning with Network Structured Covariates
- URL: http://arxiv.org/abs/2406.06829v1
- Date: Mon, 10 Jun 2024 22:33:24 GMT
- Title: Personalized Binomial DAGs Learning with Network Structured Covariates
- Authors: Boxin Zhao, Weishi Wang, Dingyuan Zhu, Ziqi Liu, Dong Wang, Zhiqiang Zhang, Jun Zhou, Mladen Kolar,
- Abstract summary: Causal discovery aims to recover the Directed Acyclic Graphical structure using observational data.
We are motivated by real-world web visit data, recording individual user visits to multiple websites.
- Score: 28.702388515396866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The causal dependence in data is often characterized by Directed Acyclic Graphical (DAG) models, widely used in many areas. Causal discovery aims to recover the DAG structure using observational data. This paper focuses on causal discovery with multi-variate count data. We are motivated by real-world web visit data, recording individual user visits to multiple websites. Building a causal diagram can help understand user behavior in transitioning between websites, inspiring operational strategy. A challenge in modeling is user heterogeneity, as users with different backgrounds exhibit varied behaviors. Additionally, social network connections can result in similar behaviors among friends. We introduce personalized Binomial DAG models to address heterogeneity and network dependency between observations, which are common in real-world applications. To learn the proposed DAG model, we develop an algorithm that embeds the network structure into a dimension-reduced covariate, learns each node's neighborhood to reduce the DAG search space, and explores the variance-mean relation to determine the ordering. Simulations show our algorithm outperforms state-of-the-art competitors in heterogeneous data. We demonstrate its practical usefulness on a real-world web visit dataset.
Related papers
- FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs [55.51300642911766]
Federated Graph Learning (FGL) empowers clients to collaboratively train Graph neural networks (GNNs) in a distributed manner.
FGL methods usually require that the graph data owned by all clients is homophilic to ensure similar neighbor distribution patterns of nodes.
We propose FedHERO, an FGL framework designed to harness and share insights from heterophilic graphs effectively.
arXiv Detail & Related papers (2025-04-29T22:23:35Z) - Heterogeneous Sheaf Neural Networks [17.664754528494132]
Heterogeneous graphs are commonly used to model relational structures in many real-world applications.
We propose using cellular sheaves to model the heterogeneity in the graph's underlying topology.
We introduce HetSheaf, a general framework for heterogeneous sheaf neural networks, and a series of heterogeneous sheaf predictors.
arXiv Detail & Related papers (2024-09-12T13:38:08Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
We propose a dynamic causal space for DAG structure learning, coined CASPER.
It integrates the graph structure into the score function as a new measure in the causal space to faithfully reflect the causal distance between estimated and ground truth DAG.
arXiv Detail & Related papers (2023-06-05T12:20:40Z) - Directed Acyclic Graph Structure Learning from Dynamic Graphs [44.21230819336437]
Estimating the structure of directed acyclic graphs (DAGs) of features (variables) plays a vital role in revealing the latent data generation process.
We study the learning problem of node feature generation mechanism on such ubiquitous dynamic graph data.
arXiv Detail & Related papers (2022-11-30T14:22:01Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Variational Interpretable Learning from Multi-view Data [2.687817337319978]
DICCA is designed to disentangle both the shared and view-specific variations for multi-view data.
Empirical results on real-world datasets show that our methods are competitive across domains.
arXiv Detail & Related papers (2022-02-28T01:56:44Z) - Social Recommendation with Self-Supervised Metagraph Informax Network [21.41026069530997]
We propose a Self-Supervised Metagraph Infor-max Network (SMIN) which investigates the potential of incorporating social- and knowledge-aware relational structures into the user preference representation for recommendation.
To inject high-order collaborative signals, we generalize the mutual information learning paradigm under the self-supervised graph-based collaborative filtering.
Experimental results on several real-world datasets demonstrate the effectiveness of our SMIN model over various state-of-the-art recommendation methods.
arXiv Detail & Related papers (2021-10-08T08:18:37Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.