論文の概要: CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only
- arxiv url: http://arxiv.org/abs/2406.06947v1
- Date: Tue, 11 Jun 2024 05:21:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 17:35:03.935382
- Title: CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only
- Title(参考訳): CAAP: フロントエンドUIのみでコンピュータタスクを解決するためのコンテキスト対応アクションプランニング
- Authors: Junhee Cho, Jihoon Kim, Daseul Bae, Jinho Choo, Youngjune Gwon, Yeong-Dae Kwon,
- Abstract要約: 高度な推論能力を持つ大規模言語モデル(LLM)は、エージェントがより複雑で以前は目に見えないタスクをこなすためのステージを定めている。
環境認識のためのスクリーンショットのみに基づいて機能するエージェントを提案する。
67種類のMiniWoB++問題に対して94.4%の成功率を達成した。
- 参考スコア(独自算出の注目度): 21.054681757006385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software robots have long been deployed in Robotic Process Automation (RPA) to automate mundane and repetitive computer tasks. The advent of Large Language Models (LLMs) with advanced reasoning capabilities has set the stage for these agents to now undertake more complex and even previously unseen tasks. However, the LLM-based automation techniques in recent literature frequently rely on HTML source codes for input, limiting their application to web environments. Moreover, the information contained in HTML codes is often inaccurate or incomplete, making the agent less reliable for practical applications. We propose an LLM-based agent that functions solely on the basis of screenshots for recognizing environments, while leveraging in-context learning to eliminate the need for collecting large datasets of human demonstration. Our strategy, named Context-Aware Action Planning (CAAP) prompting encourages the agent to meticulously review the context in various angles. Through our proposed methodology, we achieve a success rate of 94.4% on 67~types of MiniWoB++ problems, utilizing only 1.48~demonstrations per problem type. Our method offers the potential for broader applications, especially for tasks that require inter-application coordination on computers or smartphones, showcasing a significant advancement in the field of automation agents. Codes and models are accessible at https://github.com/caap-agent/caap-agent.
- Abstract(参考訳): ソフトウェアロボットは、日常的かつ反復的なコンピュータタスクを自動化するために、長い間ロボット処理自動化(Roboic Process Automation, RPA)にデプロイされてきた。
高度な推論能力を持つLarge Language Models(LLMs)の出現は、これらのエージェントがより複雑で、以前は目に見えなかったタスクをこなすステージを固めている。
しかし、最近の文献におけるLLMベースの自動化技術は、しばしば入力のためのHTMLソースコードに依存しており、アプリケーションをWeb環境に制限している。
さらに、HTMLコードに含まれる情報は、しばしば不正確または不完全であり、エージェントは実用的なアプリケーションでは信頼性が低い。
本研究では,環境認識のためのスクリーンショットのみに基づいて機能するLDMエージェントを提案する。
我々の戦略は、コンテキスト認識行動計画(CAAP)と呼ばれ、エージェントが様々な角度でコンテキストを注意深くレビューするよう促す。
提案手法により,67種類のMiniWoB++問題に対して94.4%の成功率を達成した。
提案手法は,特にコンピュータやスマートフォン上でのアプリケーション間協調を必要とするタスクに対して,より広範な応用の可能性を提供し,自動化エージェントの分野での大きな進歩を示す。
コードとモデルはhttps://github.com/caap-agent/caap-agentでアクセスできる。
関連論文リスト
- PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
本稿では,PC-Agentという階層型エージェントフレームワークを提案する。
認識の観点からは,現在のMLLMのスクリーンショットコンテンツに対する認識能力の不十分さを克服するために,アクティブ知覚モジュール(APM)を考案する。
意思決定の観点から、複雑なユーザ命令や相互依存サブタスクをより効果的に扱うために、階層的なマルチエージェント協調アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-20T05:41:55Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
私たちは小さなソフトウェア企業環境を模倣したデータによる自己完結型環境を構築します。
最も競争力のあるエージェントでは、タスクの24%が自律的に完了できます。
これは、LMエージェントによるタスク自動化に関するニュアンスな絵を描く。
論文 参考訳(メタデータ) (2024-12-18T18:55:40Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
本研究は, 観察空間と行動空間を簡略化することで, LLMベースのWebエージェントを強化する。
AgentOccam は以前の最先端および同時処理を 9.8 (+29.4%) と 5.9 (+15.8%) で上回っている。
論文 参考訳(メタデータ) (2024-10-17T17:50:38Z) - ClickAgent: Enhancing UI Location Capabilities of Autonomous Agents [0.0]
ClickAgentは、自律エージェントを構築するための新しいフレームワークである。
ClickAgentでは、MLLMが推論とアクションプランニングを処理し、別のUIロケーションモデルが画面上の関連するUI要素を識別する。
本評価は,Androidスマートフォンエミュレータと実際のAndroidスマートフォンの両方で実施し,タスク成功率をエージェント性能測定の指標として用いた。
論文 参考訳(メタデータ) (2024-10-09T14:49:02Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents [40.86728610906313]
AXISは、ユーザインタフェースアクションよりもアプリケーションプログラミングインターフェース(API)を通してアクションを優先順位付けする、LLMベースの新しいエージェントフレームワークである。
Office Wordでの実験では、AXISはタスク完了時間を65%-70%削減し、認知負荷を38%-53%削減し、精度は97%-98%と人間と比較した。
また、すべてのアプリケーションをエージェントに変え、エージェント中心のオペレーティングシステム(Agent OS)への道を開く可能性についても検討している。
論文 参考訳(メタデータ) (2024-09-25T17:58:08Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web [43.60736044871539]
エージェントがプログラムを生成する能力を評価するためのベンチマークであるOmniACTを紹介した。
このデータセットは、「次の曲を再生する」といった基本的なタスクと、「ジョン・ドーにメールを送る」といった長い水平線タスクで構成されている。
我々のベンチマークは、コンピュータタスクの自動化における言語モデルエージェントの進捗を計測し、評価するプラットフォームを提供する。
論文 参考訳(メタデータ) (2024-02-27T14:47:53Z) - A Zero-Shot Language Agent for Computer Control with Structured
Reflection [19.526676887048662]
大規模言語モデル(LLM)は、ライブコンピュータ環境での高レベルな目標の計画と実行能力の向上を示している。
タスクを実行するために、最近の作業は、しばしば、教師付き学習または少数/多発的なプロンプトを通じてタスクのトレース例から学習するモデルを必要とする。
我々は、与えられた専門家のトレースを必要としないゼロショットエージェントでこの問題にアプローチする。
論文 参考訳(メタデータ) (2023-10-12T21:53:37Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。