Reconstructing the Tropical Pacific Upper Ocean using Online Data Assimilation with a Deep Learning model
- URL: http://arxiv.org/abs/2406.07063v1
- Date: Tue, 11 Jun 2024 08:45:41 GMT
- Title: Reconstructing the Tropical Pacific Upper Ocean using Online Data Assimilation with a Deep Learning model
- Authors: Zilu Meng, Gregory J. Hakim,
- Abstract summary: A deep learning (DL) model is trained on a climate-model dataset and compared with a linear inverse model (LIM) in the tropical Pacific.
We show that the DL model produces more accurate forecasts compared to the LIM when tested on a reanalysis dataset.
We then assess the ability of an ensemble Kalman filter to reconstruct the monthly-averaged upper ocean from a noisy set of 24 sea-surface temperature observations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A deep learning (DL) model, based on a transformer architecture, is trained on a climate-model dataset and compared with a standard linear inverse model (LIM) in the tropical Pacific. We show that the DL model produces more accurate forecasts compared to the LIM when tested on a reanalysis dataset. We then assess the ability of an ensemble Kalman filter to reconstruct the monthly-averaged upper ocean from a noisy set of 24 sea-surface temperature observations designed to mimic existing coral proxy measurements, and compare results for the DL model and LIM. Due to signal damping in the DL model, we implement a novel inflation technique by adding noise from hindcast experiments. Results show that assimilating observations with the DL model yields better reconstructions than the LIM for observation averaging times ranging from one month to one year. The improved reconstruction is due to the enhanced predictive capabilities of the DL model, which map the memory of past observations to future assimilation times.
Related papers
- ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion [48.540756751934836]
ReconMOST is a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction.<n>Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data.
arXiv Detail & Related papers (2025-06-12T06:27:22Z) - Global Climate Model Bias Correction Using Deep Learning [0.4972323953932129]
Climate change affects ocean temperature, salinity and sea level, impacting monsoons and ocean productivity.
Future projections by Global Climate Models are widely used to understand the effects of climate change.
However, CMIP models have significant bias compared to reanalysis in the Bay of Bengal for the time period when both projections and reanalysis are available.
We develop a suite of data-driven deep learning models for bias correction of climate model projections and apply it to correct SST projections of the Bay of Bengal.
arXiv Detail & Related papers (2025-04-27T07:56:57Z) - Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models [1.8067095934521364]
Recent machine learning (ML) models can harness vast datasets for accurate predictions at large spatial scales.
This study explores questions regarding model design and data needed for inputs and training to improve performance.
arXiv Detail & Related papers (2024-10-23T15:36:59Z) - Can AI be enabled to dynamical downscaling? A Latent Diffusion Model to mimic km-scale COSMO5.0\_CLM9 simulations [0.0]
Downscaling techniques are one of the most prominent applications of Deep Learning (DL) in Earth System Modeling.
In this study, we apply a Latent Diffusion Model (LDM) to downscale ERA5 data over Italy up to a resolution of 2 km.
Our goal is to demonstrate that recent advancements in generative modeling enable DL to deliver results comparable to those of numerical dynamical models.
arXiv Detail & Related papers (2024-06-19T15:20:28Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - DeepVARwT: Deep Learning for a VAR Model with Trend [1.9862987223379664]
We propose a new approach that employs deep learning methodology for maximum likelihood estimation of the trend and the dependence structure.
A Long Short-Term Memory (LSTM) network is used for this purpose.
We provide a simulation study and an application to real data.
arXiv Detail & Related papers (2022-09-21T18:23:03Z) - Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model [4.903969235471705]
We extend a deep learning (DL) model to predict the heave and surge motions of a floating semi-submersible 20 to 50 seconds ahead with good accuracy.
This study extends the understanding of the DL model to predict the wave excited motions of an offshore platform.
arXiv Detail & Related papers (2021-10-09T06:26:42Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Predicting heave and surge motions of a semi-submersible with neural
networks [4.0097067208724955]
Long short-term memory (LSTM) -based machine learning model was developed to predict heave and surge motions of a semi-submersible.
With the help of measured waves, the prediction extended 46.5 s into future with an average accuracy close to 90%.
arXiv Detail & Related papers (2020-07-31T11:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.