DARA: Decomposition-Alignment-Reasoning Autonomous Language Agent for Question Answering over Knowledge Graphs
- URL: http://arxiv.org/abs/2406.07080v1
- Date: Tue, 11 Jun 2024 09:09:37 GMT
- Title: DARA: Decomposition-Alignment-Reasoning Autonomous Language Agent for Question Answering over Knowledge Graphs
- Authors: Haishuo Fang, Xiaodan Zhu, Iryna Gurevych,
- Abstract summary: We propose the DecompositionAlignment-Reasoning Agent (DARA) framework.
DARA effectively parses questions into formal queries through a dual mechanism.
We show that DARA attains performance comparable to state-of-the-art enumerating-and-ranking-based methods for KGQA.
- Score: 70.54226917774933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answering Questions over Knowledge Graphs (KGQA) is key to well-functioning autonomous language agents in various real-life applications. To improve the neural-symbolic reasoning capabilities of language agents powered by Large Language Models (LLMs) in KGQA, we propose the DecompositionAlignment-Reasoning Agent (DARA) framework. DARA effectively parses questions into formal queries through a dual mechanism: high-level iterative task decomposition and low-level task grounding. Importantly, DARA can be efficiently trained with a small number of high-quality reasoning trajectories. Our experimental results demonstrate that DARA fine-tuned on LLMs (e.g. Llama-2-7B, Mistral) outperforms both in-context learning-based agents with GPT-4 and alternative fine-tuned agents, across different benchmarks in zero-shot evaluation, making such models more accessible for real-life applications. We also show that DARA attains performance comparable to state-of-the-art enumerating-and-ranking-based methods for KGQA.
Related papers
- RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
Large language models (LLMs) have emerged as promising tools for solving challenging robotic tasks.
Most existing LLM-based agents lack the ability to retain and learn from past interactions.
We propose RAG-Modulo, a framework that enhances LLM-based agents with a memory of past interactions and incorporates critics to evaluate the agents' decisions.
arXiv Detail & Related papers (2024-09-18T20:03:32Z) - Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning [67.26776442697184]
We introduce Husky, a holistic, open-source language agent that learns to reason over a unified action space.
Husky iterates between two stages: 1) generating the next action to take towards solving a given task and 2) executing the action using expert models.
Our experiments show that Husky outperforms prior language agents across 14 evaluation datasets.
arXiv Detail & Related papers (2024-06-10T17:07:25Z) - Enhancing Textbook Question Answering Task with Large Language Models
and Retrieval Augmented Generation [3.948068081583197]
This paper proposes a methodology that handle the out-of-domain scenario in Textbook question answering (TQA)
Through supervised fine-tuning of the LLM model Llama-2 and the incorporation of RAG, our architecture outperforms the baseline, achieving a 4.12% accuracy improvement on validation set and 9.84% on test set for non-diagram multiple-choice questions.
arXiv Detail & Related papers (2024-02-05T11:58:56Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - FireAct: Toward Language Agent Fine-tuning [63.06306936820456]
We argue for the overlooked direction of fine-tuning LMs to obtain language agents.
Fine-tuning Llama2-7B with 500 agent trajectories generated by GPT-4 leads to a 77% HotpotQA performance increase.
We propose FireAct, a novel approach to fine-tuning LMs with trajectories from multiple tasks and prompting methods.
arXiv Detail & Related papers (2023-10-09T17:58:38Z) - Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models [31.509994889286183]
We introduce Language Agent Tree Search (LATS) -- the first general framework that synergizes the capabilities of language models (LMs) in reasoning, acting, and planning.
A key feature of our approach is the incorporation of an environment for external feedback, which offers a more deliberate and adaptive problem-solving mechanism.
LATS achieves state-of-the-art pass@1 accuracy (92.7%) for programming on HumanEval with GPT-4 and demonstrates gradient-free performance (average score of 75.9) comparable to gradient-based fine-tuning for web navigation on WebShop with GPT
arXiv Detail & Related papers (2023-10-06T17:55:11Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
In this study, we introduce a framework that leverages Dual Queries and Low-rank approximation Re-ranking to automatically select exemplars for in-context learning.
DQ-LoRe significantly outperforms prior state-of-the-art methods in the automatic selection of exemplars for GPT-4, enhancing performance from 92.5% to 94.2%.
arXiv Detail & Related papers (2023-10-04T16:44:37Z) - DERA: Enhancing Large Language Model Completions with Dialog-Enabled
Resolving Agents [5.562984399879218]
Large language models (LLMs) have emerged as valuable tools for many natural language understanding tasks.
In this work, we present dialog-enabled resolving agents (DERA)
DERA is a paradigm made possible by the increased conversational abilities of LLMs, namely GPT-4.
It provides a simple, interpretable forum for models to communicate feedback and iteratively improve output.
arXiv Detail & Related papers (2023-03-30T00:30:19Z) - Augmenting Pre-trained Language Models with QA-Memory for Open-Domain
Question Answering [38.071375112873675]
We propose a question-answer augmented encoder-decoder model and accompanying pretraining strategy.
This yields an end-to-end system that outperforms prior QA retrieval methods on single-hop QA tasks.
arXiv Detail & Related papers (2022-04-10T02:33:00Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.