High-purity and stable single-photon emission in bilayer WSe$_2$ via phonon-assisted excitation
- URL: http://arxiv.org/abs/2406.07097v1
- Date: Tue, 11 Jun 2024 09:37:59 GMT
- Title: High-purity and stable single-photon emission in bilayer WSe$_2$ via phonon-assisted excitation
- Authors: Claudia Piccinini, Athanasios Paralikis, José Ferreira Neto, Abdulmalik Abdulkadir Madigawa, Paweł Wyborski, Vikas Remesh, Luca Vannucci, Niels Gregersen, Battulga Munkhbat,
- Abstract summary: We investigate the impact of different optical excitation strategies on the single-photon emission characteristics of bilayer WSe$$$ quantum emitters.
Under phonon-assisted excitation, we achieve narrow and stable single-photon emission with an excellent purity reaching $ 0.94pm 0.02,$.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The excitation scheme is essential for single-photon sources as it prepares the exciton state, defines the decay dynamics, and influences the spectral diffusion of the emitted single photons. Here, we investigate the impact of different optical excitation strategies on the single-photon emission characteristics of bilayer WSe$_2$ quantum emitters. Under phonon-assisted excitation, we achieve narrow and stable single-photon emission with an excellent purity reaching $ 0.94\pm 0.02\,$. Furthermore, the decay time is reduced by more than an order of magnitude from $(16.65 \pm 2.39)\,$ns for above-band excitation to $(1.33 \pm 0.04)\,$ns for phonon-assisted excitation. Finally, we observe a suppressed spectral wandering along with a two-fold reduction of the spectral linewidth. Our comprehensive investigation highlights the critical role of the excitation method in optimizing the performance of WSe$_2$-based quantum emitters.
Related papers
- Dynamical spectra from one and two-photon Fock state pulses exciting a single chiral qubit in a waveguide [0.5852077003870417]
We study the dynamical light emission from few-photon Fock states in waveguide-QED with a chiral two-level system.
We show how a 1-photon pulse yields a transmitted long-time spectrum that is identical to the input pulse, despite significant population effects.
We also show the differences between 1-photon and 2-photon excitation, where the latter shows clear signatures of nonlinear saturation effects.
arXiv Detail & Related papers (2024-09-27T20:51:37Z) - Single-photon emitters in WSe$_2$: Critical role of phonons on excitation schemes and indistinguishability [0.0]
We reconstruct the phonon spectral density experienced by WSe$_2$ quantum emitters in the emission process.
We observe near-unity excitation fidelity up to 0.976 (0.997) under near-resonant phonon-assisted excitation.
arXiv Detail & Related papers (2024-02-16T18:55:40Z) - Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics [36.88715167286119]
Emitter dephasing is one of the key issues in the performance of solid-state single photon sources.
We show that it is possible to tune and engineer the coherence of photons emitted from a single WSe$$ monolayer dot via selectively coupling it to a spectral cavity resonance.
arXiv Detail & Related papers (2023-07-13T16:41:06Z) - On-Demand Generation of Indistinguishable Photons in the Telecom C-Band
using Quantum Dot Devices [31.114245664719455]
We demonstrate the coherent on-demand generation of in photons in the telecom C-band from single QD devices.
The research represents a significant advancement in photon-indistinguishability of single photons emitted directly in the telecom C-band.
arXiv Detail & Related papers (2023-06-14T17:59:03Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Hot-Band Absorption Can Mimic Entangled Two-Photon Absorption [52.77024349608834]
We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at 1060 nm.
We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally-populated vibrational levels of the ground electronic state.
For the typical conditions under which E2PEF measurements are performed, contributions from the HBA process could lead to a several orders-of-magnitude overestimate of the quantum advantage for excitation efficiency.
arXiv Detail & Related papers (2021-11-10T21:17:47Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Maximally entangled and GHz-clocked on-demand photon pair source [1.8428167155752175]
We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation.
arXiv Detail & Related papers (2020-10-22T15:54:35Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.