論文の概要: Detecting Markovianity of Quantum Processes via Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2406.07226v2
- Date: Wed, 12 Jun 2024 14:36:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 11:09:07.076324
- Title: Detecting Markovianity of Quantum Processes via Recurrent Neural Networks
- Title(参考訳): リカレントニューラルネットワークによる量子プロセスのマルコビアン性の検出
- Authors: Angela Rosy Morgillo, Massimiliano F. Sacchi, Chiara Macchiavello,
- Abstract要約: 本稿では、マルコフ的および非マルコフ的量子過程を分類するために、リカレントニューラルネットワーク(RNN)を利用する新しい手法を提案する。
このモデルは、様々なシナリオにまたがって95%を超える例外的な精度を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes, leveraging time series data derived from Choi states. The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios, encompassing dephasing and Pauli channels in an arbitrary basis, and generalized amplitude damping dynamics. Additionally, the developed model shows efficient forecasting capabilities for the analyzed time series data. These results suggest the potential of RNNs in discerning and predicting the Markovian nature of quantum processes.
- Abstract(参考訳): 本稿では,Choi状態から得られた時系列データを利用して,RNNを用いてマルコフおよび非マルコフ量子過程を分類する手法を提案する。
このモデルは、様々なシナリオにまたがる95%を超える例外的な精度を示し、任意のベースでデファーズとパウリのチャネルを包含し、一般化振幅減衰力学を包含する。
さらに, 解析した時系列データに対して, 効率的な予測能力を示す。
これらの結果は、量子過程のマルコフ的性質を識別・予測するRNNの可能性を示している。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
スパイキングニューラルネットワーク(SNN)は、時間データの複雑さを捉えるためのユニークな経路を提供する。
SNNを時系列予測に適用することは、効果的な時間的アライメントの難しさ、符号化プロセスの複雑さ、およびモデル選択のための標準化されたガイドラインの欠如により困難である。
本稿では,時間情報処理におけるスパイクニューロンの効率を活かした時系列予測タスクにおけるSNNのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:23:50Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - High Accuracy Uncertainty-Aware Interatomic Force Modeling with
Equivariant Bayesian Neural Networks [3.028098724882708]
原子間力学習のための新しいモンテカルロマルコフ連鎖サンプリングアルゴリズムを提案する。
さらに、NequIPアーキテクチャに基づくニューラルネットワークモデルを導入し、新しいサンプリングアルゴリズムと組み合わせることで、最先端の精度で予測が得られ、不確実性の優れた指標が得られることを示す。
論文 参考訳(メタデータ) (2023-04-05T10:39:38Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
本稿では,ディープニューラルネットワーク(DNN)の自動検出手法を提案するとともに,アンサンブルに基づく不確実性定量化にも有効であることを示す。
提案手法は,タスクの高パフォーマンスニューラルネットワークアンサンブルを検出するだけでなく,不確実性をシームレスに定量化する。
本研究では, 歴史的データからの予測と, 海面温度のスパースセンサからのフロー再構成という2つの課題に対して, この枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-02-20T03:57:06Z) - Improved Tomographic Estimates by Specialised Neural Networks [0.0]
ニューラルネットワーク(NN)は、畳み込み段階を含むことにより、パラメータのトモグラフィー推定を改善することができることを示す。
シミュレーションデータのみを用いてネットワークをトレーニングすることにより,安定かつ信頼性の高い操作が実現可能であることを示す。
論文 参考訳(メタデータ) (2022-11-21T17:15:23Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
我々は、時系列予測のための繰り返しニューラルネットワークの適応を提案するために、深部生成モデルと状態空間モデルの概念の進歩を活用する。
私たちのモデルは、すべての関連情報が隠された状態でカプセル化されるリカレントニューラルネットワークのアーキテクチャ的な動作を保ち、この柔軟性により、モデルはシーケンシャルモデリングのために任意のディープアーキテクチャに簡単に統合できます。
論文 参考訳(メタデータ) (2021-04-26T01:43:43Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
スパイキングニューラルネットワーク(SNN)は、推論と学習のための生物学的脳の効率の一部をキャプチャする。
本稿では,一般化予測最大化(GEM)に基づくオンライン学習ルールを提案する。
標準ニューロモルフィックデータセットにおける構造化された出力記憶と分類実験の結果,ログの類似性,精度,キャリブレーションの点で大きな改善が見られた。
論文 参考訳(メタデータ) (2020-07-23T10:03:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。