3D-Properties: Identifying Challenges in DPO and Charting a Path Forward
- URL: http://arxiv.org/abs/2406.07327v2
- Date: Fri, 07 Feb 2025 00:02:26 GMT
- Title: 3D-Properties: Identifying Challenges in DPO and Charting a Path Forward
- Authors: Yuzi Yan, Yibo Miao, Jialian Li, Yipin Zhang, Jian Xie, Zhijie Deng, Dong Yan,
- Abstract summary: We revisit DPO, analyzing its theoretical foundations and empirical performance.
We identify three key properties, termed 3D properties, that emerge from DPO's learning process.
We propose simple regularization techniques that improve training stability and performance.
- Score: 17.27880657597116
- License:
- Abstract: Aligning large language models (LLMs) with human preferences has gained significant attention, with Proximal Policy Optimization (PPO) as a standard yet computationally expensive method and Direct Preference Optimization (DPO) as a more efficient alternative. While DPO offers simplicity, it remains underutilized in state-of-the-art LLMs, suggesting potential limitations. In this work, we revisit DPO, analyzing its theoretical foundations and empirical performance to bridge this gap. We identify three key properties, termed 3D properties, that emerge from DPO's learning process: Drastic drop in rejected response likelihood, Degradation into response suppression, and Dispersion effect on unseen responses. We show that these issues arise from DPO's optimization dynamics, where the interaction between chosen and rejected response gradients leads to instability. Our findings are supported by experiments on both a controlled toy model and real-world LLM tasks, including mathematical problem-solving and instruction following. To address these challenges, we propose simple regularization techniques that improve training stability and performance. Additionally, we examine how preference data distribution impacts DPO's effectiveness, offering insights into how alignment models handle out-of-domain (OOD) data. Our work connects these observations to broader research and provides a theoretical explanation for DPO's limitations. We hope these insights will guide future advancements in reward-model-free preference learning, bringing it closer to reward-model-based approaches.
Related papers
- Entropy Controllable Direct Preference Optimization [3.536605202672355]
We propose a simple modification to DPO, H-DPO, which allows for control over the entropy of the resulting policy.
In our experiments, we show that H-DPO outperformed DPO across various tasks, demonstrating superior results in pass@$k$ evaluations for mathematical tasks.
arXiv Detail & Related papers (2024-11-12T07:09:44Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications [52.42860559005861]
Direct Preference Optimization (DPO) has emerged as a promising approach for alignment.
Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature.
arXiv Detail & Related papers (2024-10-21T02:27:24Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
We propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward.
TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks.
arXiv Detail & Related papers (2024-10-06T04:03:00Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - The Hitchhiker's Guide to Human Alignment with *PO [43.4130314879284]
We focus on identifying the algorithm that, while being performant, is simultaneously more robust to varying hyper parameters.
Our analysis reveals that the widely adopted DPO method consistently produces lengthy responses of inferior quality.
Motivated by these findings, we propose an embarrassingly simple extension to the DPO algorithm, LN-DPO, resulting in more concise responses without sacrificing quality.
arXiv Detail & Related papers (2024-07-21T17:35:20Z) - Understanding Reference Policies in Direct Preference Optimization [50.67309013764383]
Direct Preference Optimization (DPO) has become a widely used training method for the instruction fine-tuning of large language models (LLMs)
This work explores an under-investigated aspect of DPO - its dependency on the reference model or policy.
arXiv Detail & Related papers (2024-07-18T17:08:10Z) - Direct Alignment of Language Models via Quality-Aware Self-Refinement [31.845241241178982]
We investigate the use of intrinsic knowledge within the on-the-fly fine-tuning LLM to obtain relative qualities and help to refine the loss function.
We show that the constructed refinement function can help self-refine the loss function under mild assumptions.
Experiments indicate that they can improve the performance of the fine-tuned models over DPO and IPO.
arXiv Detail & Related papers (2024-05-31T17:31:18Z) - Towards Analyzing and Understanding the Limitations of DPO: A Theoretical Perspective [25.34250859820326]
We provide an analytical framework using the field theory to analyze the optimization process of DPO.
We find that the DPO loss function decreases the probability of producing human dispreferred data at a faster rate than it increases the probability of producing preferred data.
arXiv Detail & Related papers (2024-04-06T13:24:37Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
We propose a novel algorithm for aligning large language models to human preferences.
We show that it consistently outperforms PPO in language tasks by a large margin.
We also provide a theoretical justification supporting the design of our loss function.
arXiv Detail & Related papers (2023-06-04T01:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.