論文の概要: Global-Regularized Neighborhood Regression for Efficient Zero-Shot Texture Anomaly Detection
- arxiv url: http://arxiv.org/abs/2406.07333v1
- Date: Tue, 11 Jun 2024 15:02:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:24:54.401461
- Title: Global-Regularized Neighborhood Regression for Efficient Zero-Shot Texture Anomaly Detection
- Title(参考訳): 効率的なゼロショットテクスチャ異常検出のためのグローバル規則化近傍回帰
- Authors: Haiming Yao, Wei Luo, Yunkang Cao, Yiheng Zhang, Wenyong Yu, Weiming Shen,
- Abstract要約: 本稿では,Global-Regularized Neighborhood Regression (GRNR) と呼ばれる新しいゼロショットテクスチャ異常検出手法を提案する。
GRNRはトレーニングデータやコストを使わずに任意のテクスチャ面上の異常を検出することができる。
8つのベンチマークデータセットを用いて, GRNRの有効性を検証した。
- 参考スコア(独自算出の注目度): 7.2414696513135155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Texture surface anomaly detection finds widespread applications in industrial settings. However, existing methods often necessitate gathering numerous samples for model training. Moreover, they predominantly operate within a close-set detection framework, limiting their ability to identify anomalies beyond the training dataset. To tackle these challenges, this paper introduces a novel zero-shot texture anomaly detection method named Global-Regularized Neighborhood Regression (GRNR). Unlike conventional approaches, GRNR can detect anomalies on arbitrary textured surfaces without any training data or cost. Drawing from human visual cognition, GRNR derives two intrinsic prior supports directly from the test texture image: local neighborhood priors characterized by coherent similarities and global normality priors featuring typical normal patterns. The fundamental principle of GRNR involves utilizing the two extracted intrinsic support priors for self-reconstructive regression of the query sample. This process employs the transformation facilitated by local neighbor support while being regularized by global normality support, aiming to not only achieve visually consistent reconstruction results but also preserve normality properties. We validate the effectiveness of GRNR across various industrial scenarios using eight benchmark datasets, demonstrating its superior detection performance without the need for training data. Remarkably, our method is applicable for open-set texture defect detection and can even surpass existing vanilla approaches that require extensive training.
- Abstract(参考訳): テクスチャ表面異常検出は産業環境において広く応用されている。
しかし、既存の手法ではモデルトレーニングのために多くのサンプルを集める必要があることが多い。
さらに、主にクローズセット検出フレームワーク内で動作し、トレーニングデータセット以外の異常を識別する能力を制限する。
これらの課題に対処するために,Global-Regularized Neighborhood Regression (GRNR) と呼ばれる新しいゼロショットテクスチャ異常検出手法を提案する。
従来の手法とは異なり、GRNRはトレーニングデータやコストを使わずに任意のテクスチャ面上の異常を検出することができる。
ヒトの視覚認知から引き出されたGRNRは、テストテクスチャ画像から直接、2つの本質的な事前サポートを導出する。
GRNRの基本原理は、クエリサンプルの自己再構成回帰のために抽出された2つの本質的なサポート先を利用することである。
このプロセスは、局所的な近隣支援によって促進される変換をグローバルな正規性サポートによって正規化しつつ採用し、視覚的に一貫した再構成結果だけでなく、正規性特性の保存も目指している。
8つのベンチマークデータセットを用いて, GRNRの有効性を検証し, トレーニングデータを必要とせず, 優れた検出性能を実証した。
また,本手法はオープンセットのテクスチャ欠陥検出に適用可能であり,広範囲なトレーニングを必要とする既存のバニラアプローチを超越することも可能である。
関連論文リスト
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Spatial-temporal Memories Enhanced Graph Autoencoder for Anomaly Detection in Dynamic Graphs [52.956235109354175]
動的グラフにおける異常検出は、グラフ構造と属性の時間的進化によって大きな課題となる。
空間記憶強調グラフオートエンコーダ(STRIPE)について紹介する。
STRIPEは、動的グラフの異なる空間的・時間的ダイナミクスを効果的に活用することにより、異常を識別する優れた能力を示した。
論文 参考訳(メタデータ) (2024-03-14T02:26:10Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Exploring the Relationship between Samples and Masks for Robust Defect
Localization [1.90365714903665]
本稿では,モデルプロセスなしで欠陥パターンを直接検出する一段階フレームワークを提案する。
欠陥の位置を示す可能性のある明示的な情報は、直接マッピングを学ぶことを避けるために意図的に除外される。
その結果,提案手法はF1-ScoreのSOTA法よりも2.9%高い値を示した。
論文 参考訳(メタデータ) (2023-06-19T06:41:19Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
本研究では,GAN(Generative Adversarial Neural Network)のパワーを活用した,現実の応用における異常検出のための逆方向検出手法を提案する。
従来の手法は、あらゆる種類の異常に適用できないような、クラス単位での精度のばらつきに悩まされていた。
RCALADという手法は,この構造に新たな識別器を導入し,より効率的な学習プロセスを実現することで,この問題を解決しようとするものである。
論文 参考訳(メタデータ) (2023-04-16T13:05:39Z) - Generalized Real-World Super-Resolution through Adversarial Robustness [107.02188934602802]
本稿では,実世界のSRに取り組むために,敵攻撃の一般化能力を活用したロバスト超解法を提案する。
我々の新しいフレームワークは、現実世界のSR手法の開発においてパラダイムシフトをもたらす。
単一のロバストモデルを使用することで、実世界のベンチマークで最先端の特殊な手法より優れています。
論文 参考訳(メタデータ) (2021-08-25T22:43:20Z) - Anomaly Detection by One Class Latent Regularized Networks [36.67420338535258]
近年,GANに基づく半教師付きジェネレーティブ・アドバイザリアル・ネットワーク(GAN)手法が,異常検出タスクで人気を集めている。
遅延特徴空間でトレーニングデータの基盤となる構造を捕捉する新しい対角デュアルオートエンコーダネットワークを提案する。
実験の結果,MNISTおよびCIFAR10データセットおよびGTSRB停止信号データセットの最先端結果が得られた。
論文 参考訳(メタデータ) (2020-02-05T02:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。