Can we Retrieve Everything All at Once? ARM: An Alignment-Oriented LLM-based Retrieval Method
- URL: http://arxiv.org/abs/2501.18539v1
- Date: Thu, 30 Jan 2025 18:07:19 GMT
- Title: Can we Retrieve Everything All at Once? ARM: An Alignment-Oriented LLM-based Retrieval Method
- Authors: Peter Baile Chen, Yi Zhang, Michael Cafarella, Dan Roth,
- Abstract summary: ARM aims to better align the question with the organization of the data collection by exploring relationships among data objects.
It outperforms standard RAG with query decomposition by up to 5.2 pt in execution accuracy and agentic RAG (ReAct) by up to 15.9 pt.
It achieves up to 5.5 pt and 19.3 pt higher F1 match scores compared to these approaches.
- Score: 48.14236175156835
- License:
- Abstract: Real-world open-domain questions can be complicated, particularly when answering them involves information from multiple information sources. LLMs have demonstrated impressive performance in decomposing complex tasks into simpler steps, and previous work has used it for better retrieval in support of complex questions. However, LLM's decomposition of questions is unaware of what data is available and how data is organized, often leading to a sub-optimal retrieval performance. Recent effort in agentic RAG proposes to perform retrieval in an iterative fashion, where a followup query is derived as an action based on previous rounds of retrieval. While this provides one way of interacting with the data collection, agentic RAG's exploration of data is inefficient because successive queries depend on previous results rather than being guided by the organization of available data in the collection. To address this problem, we propose an LLM-based retrieval method -- ARM, that aims to better align the question with the organization of the data collection by exploring relationships among data objects beyond matching the utterance of the query, thus leading to a retrieve-all-at-once solution for complex queries. We evaluated ARM on two datasets, Bird and OTT-QA. On Bird, it outperforms standard RAG with query decomposition by up to 5.2 pt in execution accuracy and agentic RAG (ReAct) by up to 15.9 pt. On OTT-QA, it achieves up to 5.5 pt and 19.3 pt higher F1 match scores compared to these approaches.
Related papers
- MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs)
We first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks.
We propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers.
arXiv Detail & Related papers (2024-11-04T20:06:34Z) - Enhancing Long Context Performance in LLMs Through Inner Loop Query Mechanism [2.919891871101241]
Transformers have a quadratic scaling of computational complexity with input size.
Retrieval-augmented generation (RAG) can better handle longer contexts by using a retrieval system.
We introduce a novel approach, Inner Loop Memory Augmented Tree Retrieval (ILM-TR)
arXiv Detail & Related papers (2024-10-11T19:49:05Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge.
To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources.
We propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers.
arXiv Detail & Related papers (2024-08-15T22:34:44Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
We introduce EfficientRAG, an efficient retriever for multi-hop question answering.
Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
arXiv Detail & Related papers (2024-08-08T06:57:49Z) - Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
We focus on methods to reduce the size and improve the quality of the prompt context required for question-answering systems.
Our goal is to select the most semantically relevant documents, treating the discarded ones as outliers.
It was found that the greatest improvements were achieved with increasing complexity of the questions and answers.
arXiv Detail & Related papers (2024-07-01T15:53:29Z) - LightPAL: Lightweight Passage Retrieval for Open Domain Multi-Document Summarization [9.739781953744606]
Open-Domain Multi-Document Summarization (ODMDS) is the task of generating summaries from large document collections in response to user queries.
Traditional retrieve-then-summarize approaches fall short for open-ended queries in ODMDS tasks.
We propose LightPAL, a lightweight passage retrieval method for ODMDS.
arXiv Detail & Related papers (2024-06-18T10:57:27Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAG has recently demonstrated the performance of Large Language Models (LLMs) in the knowledge-intensive tasks such as Question-Answering (QA)
We have found that even though there is low relevance between some critical documents and query, it is possible to retrieve the remaining documents by combining parts of the documents with the query.
A two-stage retrieval framework called Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG) is proposed to improve document retrieval recall and the accuracy of answers.
arXiv Detail & Related papers (2024-06-11T15:15:33Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
We propose a simple yet effective framework to enhance open-domain question answering (ODQA) with large language models (LLMs)
SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval (SuRe)
Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches.
arXiv Detail & Related papers (2024-04-17T01:15:54Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
We propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios.
Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM.
arXiv Detail & Related papers (2023-04-27T14:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.