論文の概要: fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
- arxiv url: http://arxiv.org/abs/2406.07456v1
- Date: Tue, 11 Jun 2024 17:01:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 14:55:29.183918
- Title: fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
- Title(参考訳): fKAN: 訓練可能なヤコビ基底関数を持つフラクショナルコルモゴロフ・アルノルドネットワーク
- Authors: Alireza Afzal Aghaei,
- Abstract要約: ニューラルネットワーク設計の最近の進歩は、KAN(Kolmogorov-Arnold Networks)の発展をもたらした。
本稿では,学習可能な適応型分数-直交ジャコビ関数を基本関数として組み込んだニューラルネットワークアーキテクチャを提案する。
その結果, 分数的ヤコビ関数をkansに組み込むことで, 様々な分野やアプリケーションにおけるトレーニング速度と性能が大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in neural network design have given rise to the development of Kolmogorov-Arnold Networks (KANs), which enhance speed, interpretability, and precision. This paper presents the Fractional Kolmogorov-Arnold Network (fKAN), a novel neural network architecture that incorporates the distinctive attributes of KANs with a trainable adaptive fractional-orthogonal Jacobi function as its basis function. By leveraging the unique mathematical properties of fractional Jacobi functions, including simple derivative formulas, non-polynomial behavior, and activity for both positive and negative input values, this approach ensures efficient learning and enhanced accuracy. The proposed architecture is evaluated across a range of tasks in deep learning and physics-informed deep learning. Precision is tested on synthetic regression data, image classification, image denoising, and sentiment analysis. Additionally, the performance is measured on various differential equations, including ordinary, partial, and fractional delay differential equations. The results demonstrate that integrating fractional Jacobi functions into KANs significantly improves training speed and performance across diverse fields and applications.
- Abstract(参考訳): ニューラルネットワーク設計の最近の進歩は、速度、解釈可能性、精度を向上するコルモゴロフ・アルノルドネットワーク(KAN)の発展をもたらした。
本稿では,新しいニューラルネットワークアーキテクチャであるFrictional Kolmogorov-Arnold Network(fKAN)について述べる。
単純な微分公式、非ポリノミカルな振る舞い、正と負の両方の入力値に対する活性を含む分数的ヤコビ関数のユニークな数学的性質を活用することにより、このアプローチは効率的な学習と精度の向上を保証する。
提案したアーキテクチャは、ディープラーニングや物理インフォームドディープラーニングにおいて、さまざまなタスクで評価される。
精度は、合成回帰データ、画像分類、画像認知、感情分析で検証される。
さらに、その性能は、通常、部分、分数遅延微分方程式を含む様々な微分方程式で測定される。
その結果, 分数的ヤコビ関数をkansに組み込むことで, 様々な分野やアプリケーションにおけるトレーニング速度と性能が大幅に向上することが示された。
関連論文リスト
- A Survey on Kolmogorov-Arnold Network [0.0]
Kolmogorov-Arnold Networks(KAN)の理論的基礎、進化、応用、そして将来の可能性
Kanは、固定活性化関数の代わりに学習可能なスプラインパラメータ化関数を使用することで、従来のニューラルネットワークと区別する。
本稿では,最近のニューラルアーキテクチャにおけるkanの役割を強調し,データ集約型アプリケーションにおける計算効率,解釈可能性,拡張性を改善するための今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-11-09T05:54:17Z) - Optimizing Neural Network Performance and Interpretability with Diophantine Equation Encoding [0.0]
本稿では,ディープラーニングモデルの精度と堅牢性を高める新しい手法を提案する。
本手法は,トレーニング中にダイオファンチン制約を強制するカスタムロス関数を統合し,より一般化し,エラー境界を低減し,敵攻撃に対するレジリエンスを高める。
論文 参考訳(メタデータ) (2024-09-11T14:38:40Z) - Physics Informed Kolmogorov-Arnold Neural Networks for Dynamical Analysis via Efficent-KAN and WAV-KAN [0.12045539806824918]
物理インフォームド・コルモゴロフ・アルノルドニューラルネットワーク(PIKAN)を効率的なKANとWAV-KANにより実装する。
PIKANは従来のディープニューラルネットワークよりも優れた性能を示し、少ないレイヤで同じレベルの精度を実現し、計算オーバーヘッドを低減している。
論文 参考訳(メタデータ) (2024-07-25T20:14:58Z) - Enhancing Fast Feed Forward Networks with Load Balancing and a Master Leaf Node [49.08777822540483]
高速フィードフォワードネットワーク(FFF)は、入力空間の異なる領域が広いネットワークのニューロンの異なるサブセットを活性化する観察を利用する。
本稿では,FFFアーキテクチャにロードバランシングとマスタリーフ技術を導入し,性能向上とトレーニングプロセスの簡素化を図る。
論文 参考訳(メタデータ) (2024-05-27T05:06:24Z) - Nonlinear functional regression by functional deep neural network with
kernel embedding [20.306390874610635]
本稿では,効率的かつ完全なデータ依存型次元減少法を備えた機能的ディープニューラルネットワークを提案する。
機能ネットのアーキテクチャは、カーネル埋め込みステップ、プロジェクションステップ、予測のための深いReLUニューラルネットワークで構成される。
スムーズなカーネル埋め込みを利用することで、我々の関数ネットは離散化不変であり、効率的で、頑健でノイズの多い観測が可能となる。
論文 参考訳(メタデータ) (2024-01-05T16:43:39Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
Incrmental Gaussian Mixture Network (IGMN)と呼ばれる単一パスから学習可能なオンラインおよびインクリメンタルなアルゴリズムが、結合状態とQ値空間のためのサンプル効率関数近似器として採用された。
IGMN関数近似器の使用は、勾配降下法で訓練された従来のニューラルネットワークと比較して、強化学習に重要な利点をもたらすことが観察された。
論文 参考訳(メタデータ) (2020-11-02T03:18:15Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。