VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models
- URL: http://arxiv.org/abs/2406.07595v4
- Date: Wed, 21 Aug 2024 14:51:06 GMT
- Title: VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models
- Authors: Yu Liu, Lang Gao, Mingxin Yang, Yu Xie, Ping Chen, Xiaojin Zhang, Wei Chen,
- Abstract summary: This study introduces a new benchmark, VulDetectBench, to assess the vulnerability detection capabilities of Large Language Models (LLMs)
The benchmark comprehensively evaluates LLM's ability to identify, classify, and locate vulnerabilities through five tasks of increasing difficulty.
Our benchmark effectively evaluates the capabilities of various LLMs at different levels in the specific task of vulnerability detection, providing a foundation for future research and improvements in this critical area of code security.
- Score: 12.465060623389151
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have training corpora containing large amounts of program code, greatly improving the model's code comprehension and generation capabilities. However, sound comprehensive research on detecting program vulnerabilities, a more specific task related to code, and evaluating the performance of LLMs in this more specialized scenario is still lacking. To address common challenges in vulnerability analysis, our study introduces a new benchmark, VulDetectBench, specifically designed to assess the vulnerability detection capabilities of LLMs. The benchmark comprehensively evaluates LLM's ability to identify, classify, and locate vulnerabilities through five tasks of increasing difficulty. We evaluate the performance of 17 models (both open- and closed-source) and find that while existing models can achieve over 80% accuracy on tasks related to vulnerability identification and classification, they still fall short on specific, more detailed vulnerability analysis tasks, with less than 30% accuracy, making it difficult to provide valuable auxiliary information for professional vulnerability mining. Our benchmark effectively evaluates the capabilities of various LLMs at different levels in the specific task of vulnerability detection, providing a foundation for future research and improvements in this critical area of code security. VulDetectBench is publicly available at https://github.com/Sweetaroo/VulDetectBench.
Related papers
- VulnLLMEval: A Framework for Evaluating Large Language Models in Software Vulnerability Detection and Patching [0.9208007322096533]
Large Language Models (LLMs) have shown promise in tasks like code translation.
This paper introduces VulnLLMEval, a framework designed to assess the performance of LLMs in identifying and patching vulnerabilities in C code.
Our study includes 307 real-world vulnerabilities extracted from the Linux kernel.
arXiv Detail & Related papers (2024-09-16T22:00:20Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.
Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.
We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
Existing evaluations of large language models' (LLMs) ability to recognize and reject unsafe user requests face three limitations.
First, existing methods often use coarse-grained of unsafe topics, and are over-representing some fine-grained topics.
Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
Third, existing evaluations rely on large LLMs for evaluation, which can be expensive.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - Towards Effectively Detecting and Explaining Vulnerabilities Using Large Language Models [17.96542494363619]
Large language models (LLMs) have demonstrated remarkable capabilities in comprehending complex contexts.
In this paper, we conduct a study to investigate the capabilities of LLMs in both detecting and explaining vulnerabilities.
Under specialized fine-tuning for vulnerability explanation, our LLMVulExp not only detects the types of vulnerabilities in the code but also analyzes the code context to generate the cause, location, and repair suggestions.
arXiv Detail & Related papers (2024-06-14T04:01:25Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization.
Code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages.
This paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) to improve the detection accuracy of code models.
arXiv Detail & Related papers (2024-06-10T00:05:49Z) - A Comprehensive Study of the Capabilities of Large Language Models for Vulnerability Detection [9.422811525274675]
Large Language Models (LLMs) have demonstrated great potential for code generation and other software engineering tasks.
Vulnerability detection is of crucial importance to maintaining the security, integrity, and trustworthiness of software systems.
Recent work has applied LLMs to vulnerability detection using generic prompting techniques, but their capabilities for this task and the types of errors they make remain unclear.
arXiv Detail & Related papers (2024-03-25T21:47:36Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
We introduce a comprehensive vulnerability benchmark VulBench.
This benchmark aggregates high-quality data from a wide range of CTF challenges and real-world applications.
We find that several LLMs outperform traditional deep learning approaches in vulnerability detection.
arXiv Detail & Related papers (2023-11-21T08:20:39Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
We evaluate the effectiveness of 16 pre-trained Large Language Models on 5,000 code samples from five diverse security datasets.
Overall, LLMs show modest effectiveness in detecting vulnerabilities, obtaining an average accuracy of 62.8% and F1 score of 0.71 across datasets.
We find that advanced prompting strategies that involve step-by-step analysis significantly improve performance of LLMs on real-world datasets in terms of F1 score (by upto 0.18 on average)
arXiv Detail & Related papers (2023-11-16T13:17:20Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.